Patents by Inventor John Smythe

John Smythe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7622769
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, an oxygen barrier is deposited into the trench. An expandable, oxidizable liner, preferably amorphous silicon, is then deposited. The trench is then filled with a spin-on dielectric (SOD) material. A densification process is then applied, whereby the SOD material contracts and the oxidizable liner expands. Preferably, the temperature is ramped up while oxidizing during at least part of the densification process. The resulting trench has a negligible vertical wet etch rate gradient and a negligible recess at the top of the trench.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: November 24, 2009
    Assignee: Micron Technologies, Inc.
    Inventors: John A. Smythe, III, Jigish D. Trivedi
  • Publication number: 20090272960
    Abstract: A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. The first conductive electrode has an elevationally outermost surface and opposing laterally outermost edges at the elevationally outermost surface in one planar cross section. Multi-resistive state metal oxide-comprising material is formed over the first conductive electrode. Conductive material is deposited over the multi-resistive state metal oxide-comprising material. A second conductive electrode of the memory cell which comprises the conductive material is received over the multi-resistive state metal oxide-comprising material.
    Type: Application
    Filed: May 2, 2008
    Publication date: November 5, 2009
    Inventors: Bhaskar Srinivasan, Gurtej Sandhu, John Smythe
  • Publication number: 20090269569
    Abstract: Semiconductor devices, structures and systems that utilize a polysilazane-based silicon oxide layer or fill, and methods of making the oxide layer are disclosed. In one embodiment, a polysilazane solution is deposited on a substrate and processed with ozone in a wet oxidation at low temperature to chemically modify the polysilazane material to a silicon oxide layer.
    Type: Application
    Filed: July 6, 2009
    Publication date: October 29, 2009
    Inventors: Janos Fucsko, John A. Smythe, III, Li Li, Grady S. Waldo
  • Publication number: 20090250681
    Abstract: A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. Insulative material is deposited over the first electrode. An opening is formed into the insulative material over the first electrode. The opening includes sidewalls and a base. The opening sidewalls and base are lined with a multi-resistive state layer comprising multi-resistive state metal oxide-comprising material which less than fills the opening. A second conductive electrode of the memory cell is formed within the opening laterally inward of the multi-resistive state layer lining the sidewalls and elevationally over the multi-resistive state layer lining the base. Other aspects and implementations are contemplated.
    Type: Application
    Filed: April 8, 2008
    Publication date: October 8, 2009
    Inventors: John Smythe, Bhaskar Srinivasan, Gurtej Sandhu
  • Publication number: 20090253271
    Abstract: An apparatus and process operate to impose sonic pressure upon a spin-on film liquid mass that exhibits a liquid topography and in a solvent vapor overpressure to alter the liquid topography. Other apparatus and processes are disclosed.
    Type: Application
    Filed: April 4, 2008
    Publication date: October 8, 2009
    Inventors: Nishant Sinha, Gurtej S. Sandhu, John Smythe
  • Publication number: 20090239389
    Abstract: Disclosed is a method of forming a layer of material using an atomic layer deposition (ALD) process in a process chamber of a process tool. In one illustrative embodiment, the method includes identifying a target characteristic for the layer of material, determining a precursor pulse time for introducing a precursor gas into the process chamber during the ALD process to produce the target characteristic in the layer of material, and performing the ALD process that comprises a plurality of steps wherein the precursor gas is introduced into the chamber for the determined precursor pulse time to thereby form the layer of material.
    Type: Application
    Filed: June 1, 2009
    Publication date: September 24, 2009
    Applicant: Micron Technology, Inc.
    Inventors: Neal Rueger, John Smythe
  • Patent number: 7557420
    Abstract: Semiconductor devices, structures and systems that utilize a polysilazane-based silicon oxide layer or fill, and methods of making the oxide layer are disclosed. In one embodiment, a polysilazane solution is deposited on a substrate and processed with ozone in a wet oxidation at low temperature to chemically modify the polysilazane material to a silicon oxide layer.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: July 7, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Janos Fucsko, John A Smythe, III, Li Li, Grady S Waldo
  • Patent number: 7557047
    Abstract: Disclosed is a method of forming a layer of material using an atomic layer deposition (ALD) process in a process chamber of a process tool. In one illustrative embodiment, the method includes identifying a target characteristic for the layer of material, determining a precursor pulse time for introducing a precursor gas into the process chamber during the ALD process to produce the target characteristic in the layer of material, and performing the ALD process that comprises a plurality of steps wherein the precursor gas is introduced into the chamber for the determined precursor pulse time to thereby form the layer of material.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: July 7, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Neal Rueger, John Smythe
  • Publication number: 20090115064
    Abstract: Methods are disclosed, such as those involving increasing the density of isolated features in an integrated circuit. Also disclosed are structures associated with the methods. In one or more embodiments, contacts are formed on pitch with other structures, such as conductive interconnects. The interconnects may be formed by pitch multiplication. To form the contacts, in some embodiments, a pattern corresponding to some of the contacts is formed in a selectively definable material such as photoresist. The features in the selectively definable material are trimmed to desired dimensions. Spacer material is blanket deposited over the features in the selectively definable material and the deposited material is then etched to leave spacers on sides of the features. The selectively definable material is removed to leave a mask defined by the spacer material. The pattern defined by the spacer material may be transferred to a substrate, to form on pitch contacts.
    Type: Application
    Filed: November 1, 2007
    Publication date: May 7, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Gurtej Sandhu, Mark Kiehlbauch, Steve Kramer, John Smythe
  • Patent number: 7521378
    Abstract: Semiconductor devices, structures and systems that utilize a polysilazane-based silicon oxide layer or fill, and methods of making the oxide layer are disclosed. In one embodiment, a polysilazane solution is deposited on a substrate and processed with ozone in a wet oxidation at low temperature to chemically modify the polysilazane material to a silicon oxide layer.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: April 21, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Janos Fucsko, John A Smythe, III, Li Li, Grady S Waldo
  • Patent number: 7514366
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, a silicon nitride barrier is deposited into the trench. The silicon nitride layer has a high nitrogen content near the trench walls to protect the walls. The silicon nitride layer further from the trench walls has a low nitrogen content and a high silicon content, to allow improved adhesion. The trench is then filled with a spin-on precursor. A densification or reaction process is then applied to convert the spin-on material into an insulator. The resulting trench has a well-adhered insulator which helps the insulating properties of the trench.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: April 7, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Jigish D. Trivedi, Robert D. Patraw, Kevin L. Beaman, John A. Smythe, III
  • Patent number: 7501691
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, a liner layer preferably is deposited into the trench. An anisotropic plasma process is then performed on the trench. A silicon layer may be deposited on the base of the trench during the plasma process, or the plasma can treat the liner layer. The trench is then filled with a spin-on precursor. A densification or reaction process is then applied to convert the spin-on material into an insulator, and oxidizing the silicon rich layer on the base of the trench. The resulting trench has a consistent etch rate from top to bottom of the trench.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: March 10, 2009
    Assignee: Micron Technology, Inc.
    Inventors: John A. Smythe, III, William Budge
  • Publication number: 20090045447
    Abstract: Methods and devices are disclosed, such as those involving forming a charge trap for, e.g., a memory device, which can include flash memory cells. A substrate is exposed to temporally-separated pulses of a titanium source material, a strontium source material, and an oxygen source material capable of forming an oxide with the titanium source material and the strontium source material to form the charge trapping layer on the substrate.
    Type: Application
    Filed: August 17, 2007
    Publication date: February 19, 2009
    Applicant: Micron Technology, Inc.
    Inventors: Nirmal Ramaswamy, Gurtej Sandhu, Bhaskar Srinivasan, John Smythe
  • Patent number: 7479440
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, a liner layer preferably is deposited into the trench. An anisotropic plasma process is then performed on the trench. A silicon layer may be deposited on the base of the trench during the plasma process, or the plasma can treat the liner layer. The trench is then filled with a spin-on precursor. A densification or reaction process is then applied to convert the spin-on material into an insulator, and oxidizing the silicon rich layer on the base of the trench. The resulting trench has a consistent etch rate from top to bottom of the trench.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: January 20, 2009
    Assignee: Micron Technology, Inc.
    Inventors: John A. Smythe, III, William Budge
  • Publication number: 20090011607
    Abstract: Embodiments disclosed herein pertain to silicon dioxide deposition methods using at least ozone and tetraethylorthosilicate (TEOS) as deposition precursors. In one embodiment, a silicon dioxide deposition method using at least ozone and TEOS as deposition precursors includes flowing precursors comprising ozone and TEOS to a substrate under subatmospheric pressure conditions effective to deposit silicon dioxide-comprising material having an outer surface onto the substrate. The outer surface is treated effective to one of add hydroxyl to or remove hydroxyl from the outer surface in comparison to any hydroxyl presence on the outer surface prior to said treating. After the treating, precursors comprising ozone and TEOS are flowed to the substrate under subatmospheric pressure conditions effective to deposit silicon dioxide-comprising material onto the treated outer surface of the substrate. Other embodiments are contemplated.
    Type: Application
    Filed: July 5, 2007
    Publication date: January 8, 2009
    Inventors: John Smythe, Gurtej S. Sandhu
  • Patent number: 7439157
    Abstract: A method includes removing a portion of a substrate to define an isolation trench; forming a first dielectric layer on exposed surfaces of the substrate in the trench; forming a second dielectric layer on at least the first dielectric layer, the second dielectric layer containing a different dielectric material than the first dielectric layer; depositing a third dielectric layer to fill the trench; removing an upper portion of the third dielectric layer from the trench and leaving a lower portion covering a portion of the second dielectric layer; oxidizing the lower portion of the third dielectric layer after removing the upper portion; removing an exposed portion of the second dielectric layer from the trench, thereby exposing a portion of the first dielectric layer; and forming a fourth dielectric layer in the trench covering the exposed portion of the first dielectric layer.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: October 21, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Zailong Bian, John Smythe, Janos Fucsko, Michael Violette
  • Publication number: 20080194088
    Abstract: Atomic layer deposition methods as described herein can be advantageously used to form a metal-containing layer on a substrate. For example, certain methods as described herein can form a strontium titanate layer that has low carbon content (e.g., low strontium carbonate content), which can result in layer with a high dielectric constant.
    Type: Application
    Filed: February 14, 2007
    Publication date: August 14, 2008
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Bhaskar Srinivasan, John Smythe
  • Publication number: 20080118731
    Abstract: A method of forming a dielectric structure, such as a layer, is disclosed. The method comprises forming a high-k structure from a plurality of portions of a high-k material. Each of the plurality of portions of the high-k material is formed by depositing a plurality of monolayers of the high-k material and annealing the high-k material. The high-k material may be a perovskite-type material including, but not limited to, strontium titanate. A dielectric structure, a capacitor incorporating a dielectric structure and a method of forming a capacitor are also disclosed.
    Type: Application
    Filed: November 16, 2006
    Publication date: May 22, 2008
    Inventors: Bhaskar Srinivasan, John A. Smythe
  • Publication number: 20080085612
    Abstract: Methods of controlling critical dimensions of reduced-sized features during semiconductor fabrication through pitch multiplication are disclosed. Pitch multiplication is accomplished by patterning mask structures via conventional photoresist techniques and subsequently transferring the pattern to a sacrificial material. Spacer regions are then formed on the vertical surfaces of the transferred pattern following the deposition of a conformal material via atomic layer deposition. The spacer regions, and therefore the reduced features, are then transferred to a semiconductor substrate.
    Type: Application
    Filed: October 5, 2006
    Publication date: April 10, 2008
    Inventors: John A. Smythe, Gurtej S. Sandhu, Brian J. Coppa, Shyam Surthi, Shuang Meng
  • Publication number: 20070290294
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, a liner layer preferably is deposited into the trench. An anisotropic plasma process is then performed on the trench. A silicon layer may be deposited on the base of the trench during the plasma process, or the plasma can treat the liner layer. The trench is then filled with a spin-on precursor. A densification or reaction process is then applied to convert the spin-on material into an insulator, and oxidizing the silicon rich layer on the base of the trench. The resulting trench has a consistent etch rate from top to bottom of the trench.
    Type: Application
    Filed: August 28, 2007
    Publication date: December 20, 2007
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: John Smythe, William Budge