Patents by Inventor John Smythe

John Smythe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8324065
    Abstract: Resistive memory and methods of processing resistive memory are described herein. One or more method embodiments of processing resistive memory include conformally forming a cell material in an opening in an interlayer dielectric such that a seam is formed in the cell material, forming a conductive pathway by modifying the seam, and forming an electrode on the cell material and the seam.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: December 4, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, John A. Smythe, III
  • Patent number: 8310807
    Abstract: Capacitors and methods of forming capacitors are disclosed, and which include an inner conductive metal capacitor electrode and an outer conductive metal capacitor electrode. A capacitor dielectric region is received between the inner and the outer conductive metal capacitor electrodes and has a thickness no greater than 150 Angstroms. Various combinations of materials of thicknesses and relationships relative one another are disclosed which enables and results in the dielectric region having a dielectric constant k of at least 35 yet leakage current no greater than 1×10?7 amps/cm2 at from ?1.1V to +1.1V.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: November 13, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Rishikesh Krishnan, John Smythe, Vishwanath Bhat, Noel Rocklein, Bhaskar Srinivasan, Jeff Hull, Chris Carlson
  • Publication number: 20120282754
    Abstract: Capacitors and methods of forming capacitors are disclosed, and which include an inner conductive metal capacitor electrode and an outer conductive metal capacitor electrode. A capacitor dielectric region is received between the inner and the outer conductive metal capacitor electrodes and has a thickness no greater than 150 Angstroms. Various combinations of materials of thicknesses and relationships relative one another are disclosed which enables and results in the dielectric region having a dielectric constant k of at least 35 yet leakage current no greater than 1×10?7 amps/cm2 at from ?1.1V to +1.1V.
    Type: Application
    Filed: July 16, 2012
    Publication date: November 8, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Rishikesh Krishnan, John Smythe, Vishwanath Bhat, Noel Rocklein, Bhaskar Srinivasan, Jeff Hull, Chris Carlson
  • Publication number: 20120280198
    Abstract: The present disclosure includes GCIB-treated resistive devices, devices utilizing GCIB-treated resistive devices (e.g., as switches, memory cells), and methods for forming the GCIB-treated resistive devices. One method of forming a GCIB-treated resistive device includes forming a lower electrode, and forming an oxide material on the lower electrode. The oxide material is exposed to a gas cluster ion beam (GCIB) until a change in resistance of a first portion of the oxide material relative to the resistance of a second portion of the oxide material. An upper electrode is formed on the first portion.
    Type: Application
    Filed: July 17, 2012
    Publication date: November 8, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: John Smythe, Gurtej S. Sandhu
  • Patent number: 8304353
    Abstract: Embodiments disclosed herein pertain to silicon dioxide deposition methods using at least ozone and tetraethylorthosilicate (TEOS) as deposition precursors. In one embodiment, a silicon dioxide deposition method using at least ozone and TEOS as deposition precursors includes flowing precursors comprising ozone and TEOS to a substrate under subatmospheric pressure conditions effective to deposit silicon dioxide-comprising material having an outer surface onto the substrate. The outer surface is treated effective to one of add hydroxyl to or remove hydroxyl from the outer surface in comparison to any hydroxyl presence on the outer surface prior to said treating. After the treating, precursors comprising ozone and TEOS are flowed to the substrate under subatmospheric pressure conditions effective to deposit silicon dioxide-comprising material onto the treated outer surface of the substrate. Other embodiments are contemplated.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: November 6, 2012
    Assignee: Micron Technology, Inc.
    Inventors: John Smythe, Gurtej S. Sandhu
  • Patent number: 8298964
    Abstract: A semiconductor device and a method of forming it are disclosed in which at least two adjacent conductors have an air-gap insulator between them which is covered by nanoparticles of insulating material being a size which prevent the nanoparticles from substantially entering into the air-gap.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: October 30, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Nishant Sinha, Gurtej Sandhu, Neil Greeley, John Smythe
  • Publication number: 20120267599
    Abstract: The present disclosure includes a high density resistive random access memory (RRAM) device, as well as methods of fabricating a high density RRAM device. One method of forming an RRAM device includes forming a resistive element having a metal-metal oxide interface. Forming the resistive element includes forming an insulative material over the first electrode, and forming a via in the insulative material. The via is conformally filled with a metal material, and the metal material is planarized to within the via. A portion of the metal material within the via is selectively treated to create a metal-metal oxide interface within the via. A second electrode is formed over the resistive element.
    Type: Application
    Filed: June 14, 2012
    Publication date: October 25, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Joseph N. Greeley, John A. Smythe, III
  • Publication number: 20120258599
    Abstract: Methods are disclosed, including for increasing the density of isolated features in an integrated circuit. Also disclosed are associated structures. In some embodiments, contacts are formed on pitch with other structures, such as conductive interconnects that may be formed by pitch multiplication. To form the contacts, in some embodiments, a pattern corresponding to some of the contacts is formed in a selectively definable material such as photoresist. Features in the selectively definable material are trimmed, and spacer material is blanket deposited over the features and the deposited material is then etched to leave spacers on sides of the features. The selectively definable material is removed, leaving a mask defined by the spacer material. The pattern defined by the spacer material may be transferred to a substrate, to form on pitch contacts. In some embodiments, the on pitch contacts may be used to electrically contact conductive interconnects in the substrate.
    Type: Application
    Filed: June 19, 2012
    Publication date: October 11, 2012
    Applicant: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Mark Kiehlbauch, Steve Kramer, John Smythe
  • Patent number: 8282999
    Abstract: An apparatus and process operate to impose sonic pressure upon a spin-on film liquid mass that exhibits a liquid topography and in a solvent vapor overpressure to alter the liquid topography. Other apparatus and processes are disclosed.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: October 9, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Nishant Sinha, Gurtej S. Sandhu, John Smythe
  • Patent number: 8283203
    Abstract: Some embodiments include methods in which microwave radiation is used to activate dopant and/or increase crystallinity of semiconductor material during formation of a semiconductor construction. In some embodiments, the microwave radiation has a frequency of about 5.8 gigahertz, and a temperature of the semiconductor construction does not exceed about 500° C. during the exposure to the microwave radiation.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: October 9, 2012
    Assignee: Micron Technology, Inc.
    Inventors: John Smythe, Bhaskar Srinivasan, Ming Zhang
  • Publication number: 20120241714
    Abstract: A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. The first conductive electrode has an elevationally outermost surface and opposing laterally outermost edges at the elevationally outermost surface in one planar cross section. Multi-resistive state metal oxide-comprising material is formed over the first conductive electrode. Conductive material is deposited over the multi-resistive state metal oxide-comprising material. A second conductive electrode of the memory cell which comprises the conductive material is received over the multi-resistive state metal oxide-comprising material.
    Type: Application
    Filed: June 4, 2012
    Publication date: September 27, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Bhaskar Srinivasan, Gurtej Sandhu, John Smythe
  • Publication number: 20120241911
    Abstract: Self-aligning fabrication methods for forming memory access devices comprising a doped chalcogenide material. The methods may be used for forming three-dimensionally stacked cross point memory arrays. The method includes forming an insulating material over a first conductive electrode, patterning the insulating material to form vias that expose portions of the first conductive electrode, forming a memory access device within the vias of the insulating material and forming a memory element over the memory access device, wherein data stored in the memory element is accessible via the memory access device. The memory access device is formed of a doped chalcogenide material and formed using a self-aligned fabrication method.
    Type: Application
    Filed: June 7, 2012
    Publication date: September 27, 2012
    Inventors: Neil Greeley, Bhaskar Srinivasan, Gurtej Sandhu, John Smythe
  • Publication number: 20120235108
    Abstract: A variable resistance memory cell structure and a method of forming it. The method includes forming a first electrode, forming an insulating material over the first electrode, forming a via in the insulating material to expose a surface of the first electrode, forming a heater material within the via using gas cluster ion beams, forming a variable resistance material within the via, and forming a second electrode such that the heater material and variable resistance material are provided between the first and second electrodes.
    Type: Application
    Filed: June 1, 2012
    Publication date: September 20, 2012
    Inventor: John Smythe
  • Patent number: 8241944
    Abstract: The present disclosure includes a high density resistive random access memory (RRAM) device, as well as methods of fabricating a high density RRAM device. One method of forming an RRAM device includes forming a resistive element having a metal-metal oxide interface. Forming the resistive element includes forming an insulative material over the first electrode, and forming a via in the insulative material. The via is conformally filled with a metal material, and the metal material is planarized to within the via. A portion of the metal material within the via is selectively treated to create a metal-metal oxide interface within the via. A second electrode is formed over the resistive element.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: August 14, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Joseph N. Greeley, John A. Smythe
  • Patent number: 8236372
    Abstract: Capacitors and methods of forming capacitors are disclosed, and which include an inner conductive metal capacitor electrode and an outer conductive metal capacitor electrode. A capacitor dielectric region is received between the inner and the outer conductive metal capacitor electrodes and has a thickness no greater than 150 Angstroms. Various combinations of materials of thicknesses and relationships relative one another are disclosed which enables and results in the dielectric region having a dielectric constant k of at least 35 yet leakage current no greater than 1×10?7 amps/cm2 at from ?1.1V to +1.1V.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: August 7, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Rishikesh Krishnan, John Smythe, Vishwanath Bhat, Noel Rocklein, Bhaskar Srinivasan, Jeff Hall, Chris Carlson
  • Patent number: 8223539
    Abstract: The present disclosure includes GCIB-treated resistive devices, devices utilizing GCIB-treated resistive devices (e.g., as switches, memory cells), and methods for forming the GCIB-treated resistive devices. One method of forming a GCIB-treated resistive device includes forming a lower electrode, and forming an oxide material on the lower electrode. The oxide material is exposed to a gas cluster ion beam (GCIB) until a change in resistance of a first portion of the oxide material relative to the resistance of a second portion of the oxide material. An upper electrode is formed on the first portion.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: July 17, 2012
    Assignee: Micron Technology, Inc.
    Inventors: John Smythe, Gurtej S. Sandhu
  • Patent number: 8211803
    Abstract: Methods are disclosed, such as those involving increasing the density of isolated features in an integrated circuit. Also disclosed are structures associated with the methods. In one or more embodiments, contacts are formed on pitch with other structures, such as conductive interconnects. The interconnects may be formed by pitch multiplication. To form the contacts, in some embodiments, a pattern corresponding to some of the contacts is formed in a selectively definable material such as photoresist. The features in the selectively definable material are trimmed to desired dimensions. Spacer material is blanket deposited over the features in the selectively definable material and the deposited material is then etched to leave spacers on sides of the features. The selectively definable material is removed to leave a mask defined by the spacer material. The pattern defined by the spacer material may be transferred to a substrate, to form on pitch contacts.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: July 3, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Mark Kiehlbauch, Steve Kramer, John Smythe
  • Patent number: 8211743
    Abstract: A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. The first conductive electrode has an elevationally outermost surface and opposing laterally outermost edges at the elevationally outermost surface in one planar cross section. Multi-resistive state metal oxide-comprising material is formed over the first conductive electrode. Conductive material is deposited over the multi-resistive state metal oxide-comprising material. A second conductive electrode of the memory cell which comprises the conductive material is received over the multi-resistive state metal oxide-comprising material.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: July 3, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Bhaskar Srinivasan, Gurtej Sandhu, John Smythe
  • Patent number: 8203179
    Abstract: Devices are disclosed, such as those having a memory cell. The memory cell includes an active area formed of a semiconductor material; a first dielectric over the semiconductor material; a second dielectric comprising a material having a perovskite structure over the first dielectric; a third dielectric over the second dielectric; and a gate electrode over the third dielectric.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: June 19, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Nirmal Ramaswamy, Gurtej Sandhu, Bhaskar Srinivasan, John Smythe
  • Publication number: 20120146222
    Abstract: The invention includes methods of forming layers conformally over undulating surface topographies associated with semiconductor substrates. The undulating surface topographies can first be exposed to one or more of titanium oxide, neodymium oxide, yttrium oxide, zirconium oxide and vanadium oxide to treat the surfaces, and can be subsequently exposed to a material that forms a layer conformally along the treated surfaces. The material can, for example, comprise one or both of aluminum silane and aluminum silazane. The invention also includes semiconductor constructions having conformal layers formed over liners containing one or more of titanium oxide, yttrium oxide, zirconium oxide and vanadium oxide.
    Type: Application
    Filed: February 21, 2012
    Publication date: June 14, 2012
    Inventor: John Smythe