Patents by Inventor John T. Moore

John T. Moore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7056762
    Abstract: The invention relates to the fabrication of a resistance variable material cell or programmable metallization cell. The processes described herein can form a metal-rich metal chalcogenide, such as, for example, silver-rich silver selenide. Advantageously, the processes can form the metal-rich metal chalcogenide without the use of photodoping techniques and without direct deposition of the metal. For example, the process can remove selenium from silver selenide. One embodiment of the process implants oxygen to silver selenide to form selenium oxide. The selenium oxide is then removed by annealing, which results in silver-rich silver selenide. Advantageously, the processes can dope silver into a variety of materials, including non-transparent materials, with relatively high uniformity and with relatively precise control.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: June 6, 2006
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Terry L. Gilton, Kristy A. Campbell
  • Patent number: 7050319
    Abstract: An architecture, and its method of formation and operation, containing a high density memory array of semi-volatile or non-volatile memory elements, including, but not limited to, programmable conductive access memory elements. The architecture in one exemplary embodiment has a pair of semi-volatile or non-volatile memory elements which selectively share a bit line through respective first electrodes and access transistors controlled by respective word lines. The memory elements each have a respective second electrode coupled thereto which in cooperation with the bit line access transistors and first electrode, serves to apply read, write and erase signals to the memory element.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: May 23, 2006
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Terry L. Gilton
  • Patent number: 7045277
    Abstract: The invention includes a semiconductor processing method. A first material comprising silicon and nitrogen is formed. A second material is formed over the first material, and the second material comprises silicon and less nitrogen, by atom percent, than the first material. An imagable material is formed on the second material, and patterned. A pattern is then transferred from the patterned imagable material to the first and second materials. The invention also includes a structure comprising a first layer of silicon nitride over a substrate, and a second layer on the first layer. The second layer comprises silicon and is free of nitrogen. The structure further comprises a third layer consisting essentially of imagable material on the second layer.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: May 16, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Scott Jeffrey DeBoer, John T. Moore
  • Patent number: 7030410
    Abstract: A method of precluding diffusion of a metal into adjacent chalcogenide material upon exposure to a quanta of actinic energy capable of causing diffusion of the metal into the chalcogenide material includes forming an actinic energy blocking material layer over the metal to a thickness of no greater than 500 Angstroms and subsequently exposing the actinic energy blocking material layer to said quanta of actinic energy. In one implementation, an homogenous actinic energy blocking material layer is formed over the metal and subsequently exposed to said quanta of actinic energy. A method of forming a non-volatile resistance variable device includes providing conductive electrode material over chalcogenide material having metal ions diffused therein.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: April 18, 2006
    Assignee: Micron Technology, Inc.
    Inventor: John T. Moore
  • Patent number: 7022555
    Abstract: A method of metal doping a chalcogenide material includes forming a metal over a substrate. A chalcogenide material is formed on the metal. Irradiating is conducted through the chalcogenide material to the metal effective to break a chalcogenide bond of the chalcogenide material at an interface of the metal and chalcogenide material and diffuse at least some of the metal outwardly into the chalcogenide material. A method of metal doping a chalcogenide material includes surrounding exposed outer surfaces of a projecting metal mass with chalcogenide material. Irradiating is conducted through the chalcogenide material to the projecting metal mass effective to break a chalcogenide bond of the chalcogenide material at an interface of the projecting metal mass outer surfaces and diffuse at least some of the projecting metal mass outwardly into the chalcogenide material. In certain aspects, the above implementations are incorporated in methods of forming non-volatile resistance variable devices.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: April 4, 2006
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Terry L. Gilton
  • Patent number: 7018863
    Abstract: The invention provides a method of forming a resistance variable memory element and the resulting element. The method includes forming an insulating layer having an opening therein; forming a metal containing layer recessed in the opening; forming a resistance variable material in the opening and over the metal containing layer; and processing the resistance variable material and metal containing layer to produce a resistance variable material containing a diffused metal within the opening.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: March 28, 2006
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Kristy A. Campbell, Terry L. Gilton
  • Patent number: 6998697
    Abstract: A chalcogenide comprising material is formed to a first thickness over the first conductive electrode material. The chalcogenide material comprises AxBy. A metal comprising layer is formed to a second thickness over the chalcogenide material. The metal comprising layer defines some metal comprising layer transition thickness for the first thickness of the chalcogenide comprising material such that when said transition thickness is met or exceeded, said metal comprising layer when diffused within said chalcogenide comprising material transforms said chalcogenide comprising material from an amorphous state to a crystalline state. The second thickness being less than but not within 10% of said transition thickness. The metal is irradiated effective to break a chalcogenide bond of the chalcogenide material at an interface of the metal and chalcogenide material and diffuse at least some of the metal into the chalcogenide material.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: February 14, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Kristy A. Campbell, John T. Moore
  • Patent number: 6967383
    Abstract: The present invention provides an improved surface P-channel transistor and a method of making the same. A preferred embodiment of the method of the present invention includes providing a semiconductor substrate, forming a gate oxide layer over the semiconductor substrate, subjecting the gate oxide layer to a remote plasma nitrogen hardening treatment followed by an oxidative anneal, and forming a polysilicon layer over the resulting gate oxide layer. Significantly, the method of the present invention does not require nitrogen implantation through the polysilicon layer overlying the gate oxide and provides a surface P-channel transistor having a polysilicon electrode free of nitrogen and a hardened gate oxide layer characterized by a large concentration of nitrogen at the polysilicon electrode/gate oxide interface and a small concentration of nitrogen at the gate oxide/semiconductor substrate interface.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: November 22, 2005
    Assignee: Micron Technology, Inc.
    Inventor: John T. Moore
  • Patent number: 6963101
    Abstract: The invention pertains to films comprising silicon, oxygen and carbon and the use of the films in integrated circuit technology, such as capacitor constructions, DRAM constructions, semiconductive material assemblies, etching processes, and methods for forming capacitors, DRAMs and semiconductive material assemblies.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: November 8, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Ronald A. Weimer, John T. Moore
  • Patent number: 6961277
    Abstract: A method for refreshing PCRAM cells programmed to a low resistance state and entire arrays of PCRAM cells uses a simple refresh scheme which does not require separate control and application of discrete refresh voltages to the PCRAM cells in an array. Specifically, the array structure of a PCRAM device is constructed to allow leakage current to flow through each programmed cell in the array to refresh the programmed state. In one embodiment, the leakage current flows across the access device between the anode of the memory element and the bit line to which the cell is connected, for each memory cell in the array which has been programmed to the low resistance state. In another embodiment, the leakage current flows to the programmed cells through a doped substrate or doped regions of a substrate on which each cell is formed. An entire array is refreshed simultaneously by forming each memory element in the array to have one common anode formed as a single cell plate for the array.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: November 1, 2005
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Terry L. Gilton, Kristy A. Campbell
  • Patent number: 6955940
    Abstract: A method of forming a non-volatile resistance variable device includes forming a first conductive electrode material on a substrate. A metal doped chalcogenide comprising material is formed over the first conductive electrode material. Such comprises the metal and AxBy, where “B” is selected from S, Se and Te and mixtures thereof, and where “A” comprises at least one element which is selected from Group 13, Group 14, Group 15, or Group 17 of the periodic table. In one aspect, the chalcogenide comprising material is exposed to and HNO3 solution. In one aspect the outer surface is oxidized effective to form a layer comprising at least one of an oxide of “A” or an oxide of “B”. In one aspect, a passivating material is formed over the metal doped chalcogenide comprising material. A second conductive electrode material is deposited, and a second conductive electrode material of the device is ultimately formed therefrom.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: October 18, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Kristy A. Campbell, Terry L. Gilton, John T. Moore, Jiutao Li
  • Patent number: 6953720
    Abstract: The present invention provides a design for a PCRAM element which incorporates multiple metal-containing germanium-selenide glass layers of diverse stoichiometries. The present invention also provides a method of fabricating the disclosed PCRAM structure.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: October 11, 2005
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Terry L. Gilton, Kristy A. Campbell
  • Patent number: 6951805
    Abstract: A method of forming memory circuitry sequentially includes forming a plurality of metal interconnect lines over a semiconductive substrate. A plurality of memory cell storage devices comprising voltage or current controlled resistance setable semiconductive material are then formed. In one implementation, a method of forming integrated circuitry includes forming a metal interconnect line over a semiconductive substrate. A device comprising two metal comprising electrodes separated by a voltage or current controlled resistance setable semiconductive material is formed. The resistance setable a semiconductive material is formed after forming the metal interconnect line.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: October 4, 2005
    Assignee: Micron Technology, Inc.
    Inventor: John T. Moore
  • Patent number: 6951791
    Abstract: An integrated circuit chip comprises a periphery portion and a memory portion. The memory portion includes a data storage layer and a logic layer formed underneath the data storage layer and is separated therefrom by an intermediate layer. A first conductive layer is formed within the intermediate layer to communicatively couple the periphery and memory portions of the integrated circuit chip, and a second conductive layer is formed within the intermediate layer to communicatively couple the periphery and memory portions of the integrated circuit chip. The first and second conductive layers provide addressing and data retrieval between the memory portion and the periphery portion.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: October 4, 2005
    Assignee: Micron Technology, Inc.
    Inventor: John T. Moore
  • Patent number: 6949402
    Abstract: A method of metal doping a chalcogenide material includes forming a metal over a substrate. A chalcogenide material is formed on the metal. Irradiating is conducted through the chalcogenide material to the metal effective to break a chalcogenide bond of the chalcogenide material at an interface of the metal and chalcogenide material and diffuse at least some of the metal outwardly into the chalcogenide material. A method of metal doping a chalcogenide material includes surrounding exposed outer surfaces of a projecting metal mass with chalcogenide material. Irradiating is conducted through the chalcogenide material to the projecting metal mass effective to break a chalcogenide bond of the chalcogenide material at an interface of the projecting metal mass outer surfaces and diffuse at least some of the projecting metal mass outwardly into the chalcogenide material. In certain aspects, the above implementations are incorporated in methods of forming non-volatile resistance variable devices.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: September 27, 2005
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Terry L. Gilton
  • Patent number: 6949789
    Abstract: The present invention provides a flash memory integrated circuit and a method for fabricating the same. The method includes etching a gate stack that includes an initial oxide layer directly in contact with a silicon layer, defining an oxide-silicon interface therebetween. By exposing the etched gate stack to elevated temperatures and a dilute steam ambient, additional oxide material is formed substantially uniformly along the oxide-silicon interface. Polysilicon grain boundaries at the interface are thereby passivated after etching. In the preferred embodiment, the interface is formed between a tunnel oxide and a floating gate, and passivating the grain boundaries reduces erase variability due to enhanced charge transfer along grain boundaries. At the same time, oxide in an upper storage dielectric layer (oxide-nitride-oxide or ONO) is enhanced in the dilute steam oxidation.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: September 27, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Ronald A. Weimer, Don C. Powell, John T. Moore, Jeff A. McKee
  • Patent number: 6930909
    Abstract: In a variable resistance memory device such as a PCRAM memory device having an array variable resistance memory cells, a process is performed to detect when the on/off resistance of each variable resistance memory cell has drifted beyond predetermined tolerance levels. When resistance drift beyond the predetermined tolerance levels is detected, at least one reset pulse is applied to the cell to return the cell to its original resistance profile. The reset pulse may be applied in the form of a “hard” write signal, a “hard” erase signal, a “soft” write signal or a “soft” erase signal as appropriate, depending on the direction of the drift and the programmed state of the cell. The “hard” write and erase signals have voltage levels which may be slightly greater in magnitude than the voltage levels of normal write and erase signals, respectively, or may have slightly longer pulse widths than those of the normal write and erase signals, or both.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: August 16, 2005
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Kristy A. Campbell
  • Patent number: 6912147
    Abstract: The invention is related to methods and apparatus for providing a two-terminal constant current device, and its operation thereof. The invention provides a constant current device that maintains a constant current over an applied voltage range of at least approximately 700 mV. The invention also provides a method of changing and resetting the constant current value in a constant current device by either applying a positive potential to decrease the constant current value, or by applying a voltage more negative than the existing constant current's voltage upper limit, thereby resetting or increasing its constant current level to its original fabricated value. The invention further provides a method of forming and converting a memory device into a constant current device. The invention also provides a method for using a constant current device as an analog memory device.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: June 28, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Kristy A. Campbell, Terry L. Gilton, John T. Moore, Joseph F. Brooks
  • Patent number: 6891749
    Abstract: A resistance variable memory element and method for stabilizing the resistance variable memory element by providing a first and second electrode connected to a resistance variable material whereby the first and second electrodes comprise materials capable of providing a differential electrochemical potential across the resistance variable memory element which causes the resistance variable memory element to write to a predetermined “on” state. The resistance variable memory element is stabilized in a low resistance “on” state by the differential electrochemical potential. The first electrode preferably is a platinum electrode and the second electrode is preferably a silver electrode. The method and circuitry further includes a reverse refresh for stabilizing the resistance variable memory element in a high resistance state by applying a reverse voltage to the memory element.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: May 10, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Kristy A. Campbell, John T. Moore, Terry L. Gilton
  • Patent number: 6891245
    Abstract: The present invention relates generally to removing an undesirable second oxide, while minimally affecting a desirable first oxide, on an integrated circuit. The integrated circuit may be part of a larger system. The second oxide is first converted to another material, such as oxynitride. The other material has differing characteristics, such as etching properties, so that it can then be removed, without substantially diminishing the first oxide. The conversion may be accomplished by heating. Heating may be accomplished by rapid thermal or furnace processing. Subsequently, the other material is removed from the integrated circuit, for example by hot phosphoric etching, so that the desirable first oxide is not substantially affected.
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: May 10, 2005
    Assignee: Micron Technology, Inc.
    Inventors: David L. Chapek, John T. Moore