Patents by Inventor John T. Moore

John T. Moore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040229423
    Abstract: An electrode structure includes a first layer of conductive material and a dielectric layer formed on a surface of the first layer. An opening is formed in the dielectric layer to expose a portion of the surface of the first layer. A binding layer is formed on the dielectric layer and on the exposed portion of the surface of the first layer and a second layer of conductive material is formed on the conductive binding layer. The binding layer can be an oxide and the second layer a conductive material that is diffusible into an oxide. The electrode structure can be annealed to cause conductive material from the second layer to be chemisorbed into the binding layer to improve adhesion between the first and second layers. A programmable cell can be formed by forming a doped glass layer in the electrode structure.
    Type: Application
    Filed: June 23, 2004
    Publication date: November 18, 2004
    Inventors: John T. Moore, Joseph F. Brooks
  • Patent number: 6818481
    Abstract: An exemplary embodiment of the present invention includes a method for forming a programmable cell by forming an opening in a dielectric material to expose a portion of an underlying first conductive electrode, forming a recessed chalcogenide-metal ion material in said opening and forming a second conductive electrode overlying the dielectric material and the chalcogenide-metal ion material. A method for forming the recessed chalcogenide-metal ion material comprises forming a metal material being recessed approximately 10-90%, in the opening in the dielectric material, forming a glass material on the metal material within the opening and diffusing metal ions from the metal material into the glass material by using ultraviolet light or ultraviolet light in combination with a heat treatment, to cause a resultant metal ion concentration in the glass material.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: November 16, 2004
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Terry L. Gilton
  • Publication number: 20040222441
    Abstract: An integrated circuit chip comprises a periphery portion and a memory portion. The memory portion includes a data storage layer and a logic layer formed underneath the data storage layer and is separated therefrom by an intermediate layer. A first conductive layer is formed within the intermediate layer to communicatively couple the periphery and memory portions of the integrated circuit chip, and a second conductive layer is formed within the intermediate layer to communicatively couple the periphery and memory portions of the integrated circuit chip. The first and second conductive layers provide addressing and data retrieval between the memory portion and the periphery portion.
    Type: Application
    Filed: June 1, 2004
    Publication date: November 11, 2004
    Applicant: Micron Technology, Inc.
    Inventor: John T. Moore
  • Patent number: 6815375
    Abstract: The invention encompasses a method of forming silicon nitride on a silicon-oxide-comprising material. The silicon-oxide-comprising material is exposed to activated nitrogen species from a nitrogen-containing plasma to introduce nitrogen into an upper portion of the material. The nitrogen is thermally annealed within the material to bond at least some of the nitrogen to silicon proximate the nitrogen. After the annealing, silicon nitride is chemical vapor deposited on the nitrogen-containing upper portion of the material. The invention also encompasses a method of forming a transistor device. A silicon-oxide-comprising layer is formed over a substrate. The silicon-oxide-comprising layer is exposed to nitrogen from a nitrogen-containing plasma to introduce nitrogen into an upper portion of the layer. The nitrogen is thermally annealed within the layer to bond at least some of the nitrogen silicon proximate the nitrogen.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: November 9, 2004
    Assignee: Micron Technology, Inc.
    Inventor: John T. Moore
  • Patent number: 6815818
    Abstract: An electrode structure includes a first layer of conductive material and a dielectric layer formed on a surface of the first layer. An opening is formed in the dielectric layer to expose a portion of the surface of the first layer. A binding layer is formed on the dielectric layer and on the exposed portion of the surface of the first layer and a second layer of conductive material is formed on the conductive binding layer. The binding layer can be an oxide and the second layer a conductive material that is diffusible into an oxide. The electrode structure can be annealed to cause conductive material from the second layer to be chemisorbed into the binding layer to improve adhesion between the first and second layers. A programmable cell can be formed by forming a doped glass layer in the electrode structure.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: November 9, 2004
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Joseph F. Brooks
  • Patent number: 6813178
    Abstract: The invention is related to methods and apparatus for providing a two-terminal constant current device, and its operation thereof. The invention provides a constant current device that maintains a constant current over an applied voltage range of at least approximately 700 mV. The invention also provides a method of changing and resetting the constant current value in a constant current device by either applying a positive potential to decrease the constant current value, or by applying a voltage more negative than the existing constant current's voltage upper limit, thereby resetting or increasing its constant current level to its original fabricated value. The invention further provides a method of forming and converting a memory device into a constant current device. The invention also provides a method for using a constant current device as an analog memory device.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: November 2, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Kristy A. Campbell, Terry L. Gilton, John T. Moore, Joseph F. Brooks
  • Patent number: 6812087
    Abstract: A method of forming a non-volatile resistance variable device includes forming a patterned mass comprising elemental silver over a substrate. A layer comprising elemental selenium is formed over the substrate and including the patterned mass comprising elemental silver. The substrate is exposed to conditions effective to react only some of the elemental selenium with the elemental silver to form the patterned mass to comprise silver selenide. Unreacted elemental selenium is removed from the substrate. A first conductive electrode is provided in electrical connection with one portion of the patterned mass comprising silver selenide. A germanium selenide comprising material is provided in electrical connection with another portion of the patterned mass comprising silver selenide. A second conductive electrode is provided in electrical connection with the germanium selenide comprising material.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: November 2, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Terry L. Giltom, Kristy A. Campbell, John T. Moore
  • Publication number: 20040211957
    Abstract: A method for controlling silver doping of a chalcogenide glass in a resistance variable memory element is disclosed herein. The method includes forming a silver layer over a chalcogenide glass layer. Processing the silver layer via heat treating, light irradiation, or a combination of both to form a layer comprising silver interstitially formed in a chalcogenide glass layer; silver-selenide formed in a layer comprising silver interstitially formed in a chalcogenide glass layer; or a silver doped chalcogenide glass layer having silver-selenide formed therein.
    Type: Application
    Filed: May 20, 2004
    Publication date: October 28, 2004
    Inventors: John T. Moore, Kristy A. Campbell, Terry L. Gilton
  • Patent number: 6806175
    Abstract: A method for protecting a gate stack in an integrated circuit wafer involves the deposition of a thin nucleation or seed layer of silicon nitride on the gate stack. Following deposition of the nucleation layer, a second, primary layer of silicon nitride is formed on the nucleation layer using a BTBAS precursor to thereby form a spacer film. The primary layer may have carbon incorporated therein.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: October 19, 2004
    Assignee: Micron Technology, Inc.
    Inventor: John T. Moore
  • Publication number: 20040192006
    Abstract: The invention is related to methods and apparatus for providing a resistance variable memory element with improved data retention and switching characteristics. According to one embodiment of the invention, a resistance variable memory element is provided having at least one silver-selenide layer in between two glass layers, wherein at least one of the glass layers is a chalcogenide glass, preferably having a GexSe100−x composition. According to another embodiment of the invention, a resistance variable memory element is provided having at least one silver-selenide layer in between chalcogenide glass layers and further having a silver layer above at least one of said chalcogenide glass layers and a conductive adhesion layer above said silver layer.
    Type: Application
    Filed: April 7, 2004
    Publication date: September 30, 2004
    Inventors: Kristy A. Campbell, Jiutao Li, Allen McTeer, John T. Moore
  • Publication number: 20040191961
    Abstract: A first conductive electrode material is formed on a substrate. Chalcogenide comprising material is formed thereover. The chalcogenide material comprises AxSey. A silver comprising layer is formed over the chalcogenide material. The silver is irradiated effective to break a chalcogenide bond of the chalcogenide material at an interface of the silver comprising layer and chalcogenide material and diffuse at least some of the silver into the chalcogenide material. After the irradiating, the chalcogenide material outer surface is exposed to an iodine comprising fluid effective to reduce roughness of the chalcogenide material outer surface from what it was prior to the exposing. After the exposing, a second conductive electrode material is deposited over the chalcogenide material, and which is continuous and completely covering at least over the chalcogenide material, and the second conductive electrode material is formed into an electrode of the device.
    Type: Application
    Filed: April 16, 2004
    Publication date: September 30, 2004
    Inventors: Kristy A. Campbell, John T. Moore
  • Publication number: 20040183123
    Abstract: In one aspect, the invention includes a method of forming a gated semiconductor assembly, comprising: a) forming a silicon nitride layer over and against a floating gate; and b) forming a control gate over the silicon nitride layer. In another aspect, the invention includes a method of forming a gated semiconductor assembly, comprising: a) forming a floating gate layer over a substrate; b) forming a silicon nitride layer over the floating gate layer, the silicon nitride layer comprising a first portion and a second portion elevationally displaced from the first portion, the first portion having a greater stoichiometric amount of silicon than the second portion; and c) forming a control gate over the silicon nitride layer.
    Type: Application
    Filed: January 30, 2004
    Publication date: September 23, 2004
    Inventors: Mark A. Helm, Mark Fischer, John T. Moore, Scott Jeffrey DeBoer
  • Publication number: 20040183144
    Abstract: A method of adjusting the threshold voltage of semiconductor devices by incorporating nitride into the isolation layer so as to decrease the mobility of charge carriers and thereby increase the threshold voltage required to activate the device. The nitrogen incorporation method may comprise of decoupled plasma nitridization (DPN) and the DPN can be performed in-situ during gate oxide formation. The amount of threshold voltage can be varied by adjusting the DPN treatment time and processing parameters.
    Type: Application
    Filed: March 20, 2003
    Publication date: September 23, 2004
    Inventors: Kevin L. Beaman, John T. Moore, Ronald A. Weimer
  • Publication number: 20040185625
    Abstract: The present invention provides a design for a PCRAM element which incorporates multiple metal-containing germanium-selenide glass layers of diverse stoichiometries. The present invention also provides a method of fabricating the disclosed PCRAM structure.
    Type: Application
    Filed: February 27, 2004
    Publication date: September 23, 2004
    Inventors: John T. Moore, Terry L. Gilton, Kristy A. Campbell
  • Publication number: 20040179390
    Abstract: The invention is related to methods and apparatus for providing a two-terminal constant current device, and its operation thereof. The invention provides a constant current device that maintains a constant current over an applied voltage range of at least approximately 700 mV. The invention also provides a method of changing and resetting the constant current value in a constant current device by either applying a positive potential to decrease the constant current value, or by applying a voltage more negative than the existing constant current's voltage upper limit, thereby resetting or increasing its constant current level to its original fabricated value. The invention further provides a method of forming and converting a memory device into a constant current device. The invention also provides a method for using a constant current device as an analog memory device.
    Type: Application
    Filed: March 12, 2003
    Publication date: September 16, 2004
    Inventors: Kristy A. Campbell, Terry L. Gilton, John T. Moore, Joseph F. Brooks
  • Publication number: 20040173861
    Abstract: The present invention provides an improved surface P-channel transistor and a method of making the same. A preferred embodiment of the method of the present invention includes providing a semiconductor substrate, forming a gate oxide layer over the semiconductor substrate, subjecting the gate oxide layer to a remote plasma nitrogen hardening treatment followed by an oxidative anneal, and forming a polysilicon layer over the resulting gate oxide layer. Significantly, the method of the present invention does not require nitrogen implantation through the polysilicon layer overlying the gate oxide and provides a surface P-channel transistor having a polysilicon electrode free of nitrogen and a hardened gate oxide layer characterized by a large concentration of nitrogen at the polysilicon electrode/gate oxide interface and a small concentration of nitrogen at the gate oxide/semiconductor substrate interface.
    Type: Application
    Filed: March 2, 2004
    Publication date: September 9, 2004
    Inventor: John T. Moore
  • Publication number: 20040175859
    Abstract: A resistance variable memory element with improved data retention and switching characteristics switched between resistance memory states upon the application of write pulses having the same polarity. The resistance variable memory element can be provided having at least one silver-selenide layer in between glass layers, the glass layers are a chalcogenide glass having a GexSe100−x composition.
    Type: Application
    Filed: March 16, 2004
    Publication date: September 9, 2004
    Inventors: Kristy A. Campbell, John T. Moore, Terry L. Gilton
  • Publication number: 20040171209
    Abstract: A method for fabricating improved integrated circuit devices. The method enables selective hardening of gate oxide layers and includes providing a semiconductor substrate having a gate oxide layer formed thereover. A resist is then formed over the gate oxide layer and patterned to expose one or more areas of the gate oxide layer which are to be hardened. The exposed portions of the gate oxide layer are then hardened using a true remote plasma nitridation (RPN) scheme or a high-density plasma (HDP) RPN scheme. Because the RPN scheme used in the method of the present invention runs at low temperature, the patterned resist remains stable through the RPN process, and those areas of gate oxide layer which are exposed by the patterned resist are selectively hardened by the RPN treatment, while those areas covered by the patterned resist remain unaffected.
    Type: Application
    Filed: March 2, 2004
    Publication date: September 2, 2004
    Inventors: John T. Moore, Mark Fischer
  • Patent number: 6784018
    Abstract: A first conductive electrode material is formed on a substrate. Chalcogenide comprising material is formed thereover. The chalcogenide material comprises AxSey. A silver comprising layer is formed over the chalcogenide material. The silver is irradiated effective to break a chalcogenide bond of the chalcogenide material at an interface of the silver comprising layer and chalcogenide material and diffuse at least some of the silver into the chalcogenide material. After the irradiating, the chalcogenide material outer surface is exposed to an iodine comprising fluid effective to reduce roughness of the chalcogenide material outer surface from what it was prior to the exposing. After the exposing, a second conductive electrode material is deposited over the chalcogenide material, and which is continuous and completely covering at least over the chalcogenide material, and the second conductive electrode material is formed into an electrode of the device.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: August 31, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Kristy A. Campbell, John T. Moore
  • Publication number: 20040164335
    Abstract: A method used during the formation of a semiconductor device comprises providing a wafer substrate assembly comprising a plurality of digit line plug contact pads and capacitor storage cell contact pads which contact a semiconductor wafer. A dielectric layer is provided over the wafer substrate assembly and etched to expose the digit line plug contact pads, and a liner is provided in the opening. A portion of the digit line plug is formed, then the dielectric layer is etched again to expose the capacitor storage cell contact pads. A capacitor bottom plate is formed to contact the storage cell contact pads, then the dielectric layer is etched a third time using the liner and the bottom plate as an etch stop layer. A capacitor cell dielectric layer and capacitor top plate are formed which provide a double-sided container cell. An additional dielectric layer is formed, then the additional dielectric layer, cell top plate, and the cell dielectric are etched to expose the digit line plug portion.
    Type: Application
    Filed: February 24, 2004
    Publication date: August 26, 2004
    Inventors: Scott J. DeBoer, Ronald A. Weimer, John T. Moore