Patents by Inventor John U. Knickerbocker

John U. Knickerbocker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10217637
    Abstract: Small size chip handling and electronic component integration are accomplished using handle fixturing to transfer die or other electronic components from a full area array to a targeted array. Area array dicing of a thinned device wafer on a handle wafer/panel may be followed by selective or non-selective de-bonding of targeted die or electronic components from the handle wafer and optional attachment to a carrier such as a transfer head or tape. Alignment fiducials may facilitate precision alignment of the transfer head or tape to the device wafer and subsequently to the targeted array. Alternatively, the dies or other electronic elements are transferred selectively from either a carrier or the device wafer to the targeted array.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: February 26, 2019
    Assignee: International Business Machines Corporation
    Inventors: Russell A. Budd, Qianwen Chen, Bing Dang, Jeffrey D. Gelorme, Li-wen Hung, John U. Knickerbocker
  • Patent number: 10216008
    Abstract: Lenses and methods for adjusting the focus of a lens include dividing multiple light sensors in a lens into four quadrants. A position of the lens relative to occlusion along a top and bottom edge of the lens is determined based on lengths of bit sequences from light sensors in each of the four quadrants. An optimal focal length for the lens is determined based on the position of the lens. The focal length of the lens is adjusted to match the optimal focal length.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: February 26, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Emily R. Kinser, John U. Knickerbocker, Roy R. Yu
  • Patent number: 10168550
    Abstract: Methods of forming a lens include forming components on a lower substrate. The components are sealed on the lower substrate with a sealing layer. An upper substrate is formed over the sealing layer. The lower substrate is polished to a lower lens curvature.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: January 1, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Emily R. Kinser, John U. Knickerbocker, Roy R. Yu
  • Publication number: 20180350768
    Abstract: A interposer sandwich structure comprises a top interposer and a bottom interposer enclosing an integrated circuit electronic device that includes means for attaching the device to the bottom interposer, and an interconnection structure connecting the top interposer to the bottom interposer. The top interposer may also be directly connected to a chip carrier in addition to the bottom interposer. The structure provides shielding and protection of the device against Electrostatic Discharge (ESD), Electromagnetic Interference (EMI), and Electromagnetic Conductivity (EMC) in miniaturized 3D packaging.
    Type: Application
    Filed: August 7, 2018
    Publication date: December 6, 2018
    Applicant: International Business Machines Corporation
    Inventors: William E. BERNIER, Bing Dang, Mario J. Interrante, John U. Knickerbocker, Son K. Tran
  • Publication number: 20180344245
    Abstract: An apparatus includes a substrate having one or more vias formed therein. At least one of the vias has at least one liner disposed on at least one sidewall thereof. The apparatus also includes at least one interconnect formed through the at least one via. The one or more interconnects comprise a solder material filled using injection molded soldering.
    Type: Application
    Filed: August 3, 2018
    Publication date: December 6, 2018
    Inventors: John U. Knickerbocker, Shriya Kumar, Jae-Woong Nah
  • Patent number: 10130302
    Abstract: A method includes forming one or more vias in a substrate, forming at least one liner on at least one sidewall of at least one of the vias, and filling said at least one via with solder material using injection molded soldering. The at least one liner may comprise a solder adhesion layer, a barrier layer, or a combination of a barrier layer and a solder adhesion layer.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: November 20, 2018
    Assignee: International Business Machines Corporation
    Inventors: John U. Knickerbocker, Shriya Kumar, Jae-Woong Nah
  • Publication number: 20180323472
    Abstract: A method for integrating a thin film microbattery with electronic circuitry includes forming a release layer over a handler, forming a thin film microbattery over the release layer of the handler, removing the thin film microbattery from the handler, depositing the thin film microbattery on an interposer, forming electronic circuitry on the interposer, and sealing the thin film microbattery and the electronic circuitry to create individual microbattery modules.
    Type: Application
    Filed: May 3, 2017
    Publication date: November 8, 2018
    Inventors: Qianwen Chen, Bing Dang, John U. Knickerbocker
  • Publication number: 20180323473
    Abstract: A method for integrating a thin film microbattery with electronic circuitry includes forming a release layer over a handler, forming a thin film microbattery over the release layer of the handler, removing the thin film microbattery from the handler, depositing the thin film microbattery on an interposer, forming electronic circuitry on the interposer, and sealing the thin film microbattery and the electronic circuitry to create individual microbattery modules.
    Type: Application
    Filed: November 2, 2017
    Publication date: November 8, 2018
    Inventors: Qianwen Chen, Bing Dang, John U. Knickerbocker
  • Patent number: 10108068
    Abstract: A lens structure includes a transparent cell containing a liquid crystal material. The cell is thicker in a center region thereof than at peripheral regions. The structure further includes transparent electrically conductive electrodes coupled with opposing top and bottom surfaces of the cell and configured to establish an electric field through the cell that is strongest at the peripheral regions where the cell is thinner relative to the center region so that a value of the index of refraction of the liquid crystal material changes across the cell from the center region towards the peripheral regions to change an effective focal length of the lens structure. In some embodiments the top surface of the cell has a first curvature C1 and the bottom surface of the cell has a second curvature C2 that differs from the first curvature.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: October 23, 2018
    Assignee: International Business Machines Corporation
    Inventors: Michael S. Gordon, John U. Knickerbocker, Minhua Lu, Robert Polastre
  • Patent number: 10098611
    Abstract: In accordance with the example embodiments of the invention there is at least a method and apparatus to perform receiving, with at least one diaphragm of a device placed on a skin of a living body of a human being or animal, acoustic data of the living body; determining digitized data from the acoustic data of the living body; and sending the digitized data towards an analytics system for a medical diagnosis associated with the living body; determining a relationship between the digitized data and health conditions of the human being or animal; and applying the relationship to a diagnosis of the health conditions of the human being or animal.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: October 16, 2018
    Assignee: International Business Machines Corporation
    Inventors: Kang-Wook Lee, John U. Knickerbocker
  • Patent number: 10101631
    Abstract: A lens structure includes a transparent cell containing a liquid crystal material. The cell is thicker in a center region thereof than at peripheral regions. The structure further includes transparent electrically conductive electrodes coupled with opposing top and bottom surfaces of the cell and configured to establish an electric field through the cell that is strongest at the peripheral regions where the cell is thinner relative to the center region so that a value of the index of refraction of the liquid crystal material changes across the cell from the center region towards the peripheral regions to change an effective focal length of the lens structure. In some embodiments the top surface of the cell has a first curvature C1 and the bottom surface of the cell has a second curvature C2 that differs from the first curvature.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: October 16, 2018
    Assignee: International Business Machines Corporation
    Inventors: Michael S. Gordon, John U. Knickerbocker, Minhua Lu, Robert Polastre
  • Publication number: 20180226516
    Abstract: A semiconductor structure includes a thin-film device layer, an optoelectronic device disposed in the thin-film device layer, and a surrogate substrate permanently attached to the thin film device layer. The surrogate substrate is optically transparent and has a thermal conductivity of at least 300 W/m-K. The optoelectronic device excitable by visible light transmitted through the surrogate substrate.
    Type: Application
    Filed: April 3, 2018
    Publication date: August 9, 2018
    Applicant: International Business Machines Corporation
    Inventors: Bing DANG, John U. KNICKERBOCKER, Steven Lorenz WRIGHT, Cornelia TSANG YANG
  • Publication number: 20180218934
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The release layer comprises at least one additive that adjusts a frequency of electro-magnetic radiation absorption property of the release layer. The additive comprises, for example, a 355 nm chemical absorber and/or chemical absorber for one of more wavelengths in a range comprising 600 nm to 740 nm. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Application
    Filed: March 26, 2018
    Publication date: August 2, 2018
    Inventors: Paul S. ANDRY, Bing DANG, Jeffrey Donald GELORME, Li-Wen HUNG, John U. KNICKERBOCKER, Cornelia Tsang YANG
  • Patent number: 10032943
    Abstract: A semiconductor structure includes a thin-film device layer, an optoelectronic device disposed in the thin-film device layer, and a surrogate substrate permanently attached to the thin film device layer. The surrogate substrate is optically transparent and has a thermal conductivity of at least 300 W/m-K. The optoelectronic device excitable by visible light transmitted through the surrogate substrate. A method of fabricating the semiconductor structure includes fabricating the optoelectronic device in a device layer thin-film of SiC on a silicon wafer of a first diameter, transferring the device layer thin-film of SiC from the silicon wafer, and permanently bonding the device layer thin-film to a SiC surrogate substrate of a second diameter.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: July 24, 2018
    Assignee: International Business Machines Corporation
    Inventors: Bing Dang, John U. Knickerbocker, Steven Lorenz Wright, Cornelia Tsang Yang
  • Publication number: 20180182672
    Abstract: A support structure for use in fan-out wafer level packaging is provided that includes, a silicon handler wafer having a first surface and a second surface opposite the first surface, a release layer is located above the first surface of the silicon handler wafer, and a layer selected from the group consisting of an adhesive layer and a redistribution layer is located on a surface of the release layer. After building-up a fan-out wafer level package on the support structure, infrared radiation is employed to remove (via laser ablation) the release layer, and thus remove the silicon handler wafer from the fan-out wafer level package.
    Type: Application
    Filed: February 23, 2018
    Publication date: June 28, 2018
    Inventors: Bing Dang, Jeffrey D. Gelorme, John U. Knickerbocker
  • Publication number: 20180174882
    Abstract: A bonding material including a phenoxy resin thermoplastic component, and a carbon black filler component. The carbon black filler component is present in an amount greater than 1 wt. %. The carbon black filler converts the phenoxy resin thermoplastic component from a material that transmits infra-red (IR) wavelengths to a material that absorbs a substantial portion of infra-red (IR) wavelengths.
    Type: Application
    Filed: February 20, 2018
    Publication date: June 21, 2018
    Inventors: Bing Dang, Jeffrey D. Gelorme, John U. Knickerbocker
  • Publication number: 20180146272
    Abstract: A wearable monitoring system includes a microelectromechanical (MEMS) microphone to receive acoustic signal data through skin of a user. An integrated circuit chip is bonded to and electrically connected to the MEMS microphone. A portable power source is connected to at least the integrated circuit chip. A flexible substrate is configured to encapsulate and affix the MEMS microphone and the integrated circuit chip to the skin of the user.
    Type: Application
    Filed: December 28, 2017
    Publication date: May 24, 2018
    Inventors: Li-Wen Hung, John U. Knickerbocker
  • Publication number: 20180133152
    Abstract: Electromechanical substance delivery devices are provided which implement low-power electromechanical release mechanisms for controlled delivery of substances such as drugs and medication. For example, an electromechanical device includes a substrate having a cavity formed in a surface of the substrate, a membrane disposed on the surface of the substrate covering an opening of the cavity, and a seal disposed between the membrane and the surface of the substrate. The seal surrounds the opening of the cavity, and the seal and membrane are configured to enclose the cavity and retain a substance within the cavity. An electrode structure is configured to locally heat a portion of the membrane in response to a control voltage applied to the electrode structure, and create a stress that causes a rupture in the locally heated portion of the membrane to release the substance from within the cavity.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 17, 2018
    Inventors: S. Jay Chey, Bing Dang, John U. Knickerbocker, Kenneth F. Latzko, Joana Sofia Branquinho Teresa Maria, Lavanya Turlapati, Bucknell C. Webb, Steven L. Wright
  • Publication number: 20180138072
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The the at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 17, 2018
    Inventors: Paul S. ANDRY, Bing DANG, Jeffrey Donald GELORME, Li-Wen HUNG, John U. KNICKERBOCKER, Cornelia Tsang YANG
  • Publication number: 20180138073
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The release layer comprises at least one additive that adjusts a frequency of electro-magnetic radiation absorption property of the release layer. The additive comprises, for example, a 355 nm chemical absorber and/or chemical absorber for one of more wavelengths in a range comprising 600 nm to 740 nm. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The the at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 17, 2018
    Inventors: Paul S. ANDRY, Bing DANG, Jeffrey Donald GELORME, Li-Wen HUNG, John U. KNICKERBOCKER, Cornelia Tsang YANG