Patents by Inventor John Watson

John Watson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210243843
    Abstract: A heating element includes an electrically insulating layer; resistive layer formed of a positive temperature coefficient material; and an electrically conductive layer disposed between the electrically insulating layer and the resistive layer and including a first bus and a second bus that is spaced apart from the first bus, the resistive layer electrically connecting the first bus and the second bus. The electrically insulating layer, the electrically conductive layer, and the resistive layer are stacked to form a lamination and the lamination having a thickness and a width and length extending orthogonal to the thickness. The lamination may have slits extending through the thickness thereof and along a portion of the length thereof. Terminals may be connected to the buses and arranged to provide a counter current flow pattern across the lamination. The lamination may be used in a warming device and in connection with a patient warming system.
    Type: Application
    Filed: January 29, 2021
    Publication date: August 5, 2021
    Inventors: Richard P. Nardo, Andrew Moss, John Michael Kasunich, Breese John Watson, Hugo van der Walt, Farhad Haghgoeian
  • Patent number: 11073829
    Abstract: A system for detecting transparent elements in a vehicle environment are described. In some examples, this may include accessing an image of a scene captured by an image capture device attached to a vehicle. A reflected image present in the image may be detected. The reflected image may include a portion of the vehicle. It may be determined that the scene includes a transparent element based at least in part on detecting the reflected image present in the image.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: July 27, 2021
    Assignee: Amazon Technologies, Inc.
    Inventors: Chengwu Cui, Sarah Graber, Joshua John Watson, Scott Michael Wilcox
  • Patent number: 11053186
    Abstract: A process for the production of glycolic acid or a derivative thereof comprises: reacting formaldehyde with carbon monoxide and water in a carbonylation reactor in the presence of a sulfur catalyst, said reactor operating under suitable conditions, such that glycolic acid is formed; recovering a first product stream comprising glycolic acid, impurities and a sulfur species in the carbonylation reactor; passing the first product stream to an esterification reactor where it is subjected to esterification to form an alkylglycolate and wherein the esterification is catalysed by the sulfur species recovered in the first product stream; recovering a second product stream comprising the alkylglycolate, sulfur species and impurities from the esterification reactor; separating the sulfur species from the second product stream and recycling it to the carbonylation reactor in step (a) to form a sulphur depleted second product stream; separating the alkylglycolate from the sulphur depleted second product stream in a dist
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: July 6, 2021
    Assignee: Johnson Matthey Davy Technologies Limited
    Inventors: Dena Roberts, David John Watson, John Swinney
  • Patent number: 10994831
    Abstract: Temperature management systems for aerial vehicles may include heat pipes that are thermally connected to components that generate heat. The heat pipes may be routed through or adjacent to a propeller or propulsion airflow, or within or across a vehicle airflow, to dissipate heat from the components. A heat pipe may be selected from a plurality of heat pipes based on measured temperatures of components that generate heat, operational characteristics of the aerial vehicle and/or one or more propellers, and/or measured temperatures of other components that may be heated. Additional temperature management systems may include cool air ducts and cool air pipes that may be routed from a propeller or propulsion airflow, or a vehicle airflow, to components that generate heat or other components that may be cooled.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: May 4, 2021
    Assignee: Amazon Technologies, Inc.
    Inventors: Sarah Graber, Benjamin Griffin Novak, Joshua John Watson
  • Patent number: 10969786
    Abstract: A system may include sensor modules configured to generate sensor signals representative of an environment surrounding a vehicle, and a sensor configured to be coupled to the frame of the vehicle at a location spaced from a first sensor module and configured to generate sensor signals representative of movement of the first sensor module relative to a portion of the frame. The system may also include a sensor processor configured to receive the sensor signals representative of movement of the first sensor module and estimate relative motion of the first sensor module relative to the portion of the frame of the vehicle. The sensor processor may also be configured to calculate, based at least in part on the relative motion estimation, a position, orientation, and/or velocity of the vehicle, and a position of objects in the surrounding environment and/or movement of the objects in the surrounding environment.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: April 6, 2021
    Assignee: Amazon Technologies, Inc.
    Inventors: Paul Viola, Joshua John Watson
  • Publication number: 20210079770
    Abstract: A method of estimating a real time production flowrate from a well by estimating a real time flowrate of a marker fluid in the well, and comparing the estimated flowrate with a baseline marker fluid flowrate; where the baseline marker fluid flowrate correlates to baseline production fluid flowrate. The baseline marker fluid flowrate is obtained by introducing an amount of a marker fluid in the well, monitoring the time over which the marker fluid travels a set distance, and estimating a flowrate of the marker fluid based on the monitored time and amount of marker fluid. The real time production flowrate is obtained by extrapolating the baseline production fluid flowrate by an amount derived from a comparison of the baseline and real time marker fluid flow rates.
    Type: Application
    Filed: September 13, 2019
    Publication date: March 18, 2021
    Inventor: Peter John Watson
  • Publication number: 20210070945
    Abstract: Methods for improving the dispersion of optical brighteners in polymeric compositions are provided. Polymeric compositions obtained by these methods are also provided. Premixes for use in the methods are also provided. In particular, methods for incorporating an optical brightener in a polymeric composition comprising dissolving the optical brightener in a solvent prior to adding the optical brightener to the polymeric compositions are provided.
    Type: Application
    Filed: September 3, 2020
    Publication date: March 11, 2021
    Inventors: Yan MENG, Michael John WATSON, Chris HELT, Danaya PRATCHAYANAN, Amanda BURTON, Leeanne BROWN
  • Patent number: 10922984
    Abstract: Techniques for verifying a location and identification of a landing marker to aid an unmanned aerial vehicle (UAV) to deliver a payload to a location may be provided. For example, upon receiving an indication that a UAV has arrived to a delivery location, a server computer may process one or more images of an area that are provided by the UAV and/or a user interacting with a user device. A landing marker may be identified in the image and a representation of the landing marker along with instructions to guide the UAV to deliver the payload to the landing marker may be transmitted to the UAV and implemented by the UAV.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: February 16, 2021
    Assignee: Amazon Technologies, Inc.
    Inventors: Scott Patrick Boyd, Chengwu Cui, Sarah Graber, Barry James O'Brien, Joshua John Watson, Scott Michael Wilcox
  • Patent number: 10908128
    Abstract: An inspection device for inspecting storage silos having mobile body with a tray portion for holding internal components for powering and controlling the inspection device, such as a control circuit and power source. Pairs of spaced apart in-line drive wheels are mounted to the tray portion. An external equipment mounting location (space) is provided between the pairs of drive wheels. A universal wiring harness is located within the tray portion and extends to the external mounting location such that at least two non-identical items of inspection equipment can be interchangeably mounted to the mobile body and connected to the wiring harness. A top portion may be secured over the tray portion to enclose the internal components. Optional fenders may be secured over the wheels and external equipment. Preferably, the external equipment can be swapped without having to remove the top portion from the tray portion.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: February 2, 2021
    Assignee: Astee, Inc.
    Inventors: Charles Simpson, John Watson, Albert Covington, Kris Robertson
  • Publication number: 20210012518
    Abstract: This disclosure describes a configuration of an aerial vehicle, such as an unmanned aerial vehicle (“UAV”), that includes a plurality of cameras that may be selectively combined to form a stereo pair for use in obtaining stereo images that provide depth information corresponding to objects represented in those images. Depending on the distance between an object and the aerial vehicle, different cameras may be selected for the stereo pair based on the baseline between those cameras and a distance between the object and the aerial vehicle. For example, cameras with a small baseline (close together) may be selected to generate stereo images and depth information for an object that is close to the aerial vehicle. In comparison, cameras with a large baseline may be selected to generate stereo images and depth information for an object that is farther away from the aerial vehicle.
    Type: Application
    Filed: May 28, 2020
    Publication date: January 14, 2021
    Inventors: Scott Raymond Harris, Barry James O'Brien, Joshua John Watson
  • Publication number: 20200413026
    Abstract: Described is an aerial vehicle, such as an unmanned aerial vehicle (“UAV”), that includes a plurality of sensors, such as stereo cameras, mounted along a perimeter frame of the aerial vehicle and arranged to generate a scene that surrounds the aerial vehicle. The sensors may be mounted in or on winglets of the perimeter frame. Each of the plurality of sensors has a field of view and the plurality of optical sensors are arranged and/or oriented such that their fields of view overlap with one another throughout a continuous space that surrounds the perimeter frame. The fields of view may also include a portion of the perimeter frame or space that is adjacent to the perimeter frame.
    Type: Application
    Filed: September 9, 2020
    Publication date: December 31, 2020
    Inventors: Taylor David Grenier, Louis Leroi LeGrand, III, Barry James O'Brien, Joshua John Watson, Ricky Dean Welsh
  • Patent number: 10853942
    Abstract: Camera calibration may be performed in a mobile environment. One or more cameras can be mounted on a mobile vehicle, such as an unmanned aerial vehicle (UAV) or an automobile. Because of the mobility of the vehicle the one or more cameras may be subjected to inaccuracy in imagery caused by various factors, such as environmental factors (e.g., airflow, wind, etc.), impact by other objects (e.g., debris, vehicles, etc.), vehicle vibrations, and the like. To reduce the inaccuracy in imagery, the mobile vehicle can include a mobile camera calibration system configured to calibrate the one or more cameras while the mobile vehicle is traveling along a path. The mobile camera calibration system can cause the one or more cameras to capture an image of an imaging target while moving, and calibrate the one or more cameras based on a comparison between the image and imaging target data.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: December 1, 2020
    Assignee: Amazon Technologies, Inc.
    Inventors: Scott Patrick Boyd, Chengwu Cui, Barry James O'Brien, Joshua John Watson, Scott Michael Wilcox
  • Patent number: 10854096
    Abstract: Described are systems, methods, and apparatus for detecting objects within a distance of an aerial vehicle, and developing a three-dimensional model or representation of those objects. Rather than attempting to use stereo imagery to determine distances and/or depth of objects, the described implementations utilize range-gating, or time-gating, and the known position of the aerial vehicle to develop a three-dimensional representation of objects. For example, when the aerial vehicle is at a first position it may use range-gating to detect an object at a defined distance from the vehicle. The aerial vehicle may then alter its position and use range-gating to detect an object that is the defined distance from the vehicle at the new position. This may be done at several different positions and the resulting information and aerial vehicle position information combined to form a three-dimensional representation of those objects.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: December 1, 2020
    Assignee: Amazon Technologies, Inc.
    Inventors: Scott Raymond Harris, Benjamin Griffin Novak, Joshua John Watson
  • Patent number: 10846167
    Abstract: Automated issue remediation for information technology infrastructure comprises invoking an application programming interface to obtain at least one issue object corresponding to an alert generated by a monitoring system; matching the issue object to at least one diagnosis plugin of a plurality of diagnosis plugins; obtaining a prescription object from the diagnosis plugin, the prescription object comprising a remedy; and invoking the remedy after verifying the remedy is authorized to proceed.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: November 24, 2020
    Assignee: Dropbox, Inc.
    Inventors: David Mah, Scott MacFiggen, John Watson
  • Patent number: 10835533
    Abstract: Provided is Compound (I) or a pharmaceutically acceptable salt thereof, which is an inhibitor of TrkA kinase and is useful in the treatment of diseases which can be treated with a TrkA kinase inhibitor such as pain, cancer, inflammation and inflammatory diseases, neurodegenerative diseases, certain infectious diseases, Sjogren's syndrome, endometriosis, diabetic peripheral neuropathy, prostatitis, pelvic pain syndrome, diseases related to an imbalance of the regulation of bone remodeling, and diseases resulting from Connective Tissue Growth Factor aberrant signaling.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: November 17, 2020
    Assignee: Array BioPharma Inc.
    Inventors: Shelley Allen, Steven W. Andrews, Brian Baer, Zackary Crane, Weidong Liu, Daniel John Watson
  • Patent number: 10829609
    Abstract: The present invention relates to a novel silicone rubber syntactic foam and the silicone precursor of said foam.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: November 10, 2020
    Assignee: Elkem Silicones USA Corp.
    Inventors: Virginia O'Neil, Jessica Hanley, Matthew Kihara, Leeanne Brown, Michael John Watson, Matthew Paul Timmons
  • Patent number: 10815005
    Abstract: An unmanned aerial vehicle (UAV) landing marker transmits a reply signal in response to receiving radar signals emitted by a UAV. The landing marker can include a passive transponder that emits the reply signal, with the reply signal being a harmonic of the fundamental frequency of the radar signal emitted by the UAV. The landing marker can also include a transmitter to transmit the reply signal. Additionally, the landing marker can include sensors to monitor the environment about the landing marker and this environmental information can be transmitted to the UAV as part of the reply signal.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: October 27, 2020
    Assignee: Amazon Technologies, Inc.
    Inventors: Scott Michael Wilcox, Joshua John Watson, Scott Raymond Harris
  • Patent number: 10778960
    Abstract: Described is an aerial vehicle, such as an unmanned aerial vehicle (“UAV”), that includes a plurality of sensors, such as stereo cameras, mounted along a perimeter frame of the aerial vehicle and arranged to generate a scene that surrounds the aerial vehicle. The sensors may be mounted in or on winglets of the perimeter frame. Each of the plurality of sensors has a field of view and the plurality of optical sensors are arranged and/or oriented such that their fields of view overlap with one another throughout a continuous space that surrounds the perimeter frame. The fields of view may also include a portion of the perimeter frame or space that is adjacent to the perimeter frame.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: September 15, 2020
    Assignee: Amazon Technologies, Inc.
    Inventors: Taylor David Grenier, Louis Leroi LeGrand, III, Barry James O'Brien, Joshua John Watson, Ricky Dean Welsh
  • Publication number: 20200270247
    Abstract: The present invention relates to compounds that are inhibitors of the orexin-1 receptor. The compounds have the structural formula I defined herein. The present invention also relates to processes for the preparation of these compounds, to pharmaceutical compositions comprising them, and to their use in the treatment of diseases or disorders associated with orexin-1 receptor activity.
    Type: Application
    Filed: March 10, 2020
    Publication date: August 27, 2020
    Inventors: Emma Louise Blaney, Barrie Phillip Martin, Thorsten Nowak, Martin John Watson
  • Patent number: 10733738
    Abstract: Described is an, such as an unmanned aerial vehicle (“UAV”), that includes stereo pairs of imaging element, each imaging element including a region of interest controller. The region of interest controller for an imaging element of the stereo pair receives movement information affecting the imaging element and selects a portion of pixels of a digital image formed by the imaging element. The portion of pixels are provided to an image processor that utilizes the portion of pixels to determine depth information for objects represented by the pixels.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: August 4, 2020
    Assignee: Amazon Technologies, Inc.
    Inventor: Joshua John Watson