Patents by Inventor Johnathan E. Faltermeier

Johnathan E. Faltermeier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10332971
    Abstract: A method of forming a semiconductor structure includes depositing a gate dielectric layer lining a recess of a gate structure formed on a substrate with a first portion of the gate dielectric layer covering sidewalls of the recess and a second portion of the gate dielectric layer covering a bottom of the recess. A protective layer is deposited above the gate dielectric layer and then recessed selectively to the gate dielectric layer so that a top surface of the protective layer is below of the recess. The first portion of the gate dielectric layer is recessed until a top of the first portion of the gate dielectric layer is approximately coplanar with the top surface of the protective layer. The protective layer is removed and a conductive barrier is deposited above the recessed first portion of the gate dielectric layer to cut a diffusion path to the gate dielectric layer.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: June 25, 2019
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Johnathan E. Faltermeier, Su Chen Fan, Sivananda K. Kanakasabapathy, Injo Ok, Tenko Yamashita
  • Patent number: 10008415
    Abstract: A gate structure straddling a plurality of semiconductor material portions is formed. Source regions and drain regions are formed in the plurality of semiconductor material portions, and a gate spacer laterally surrounding the gate structure is formed. Epitaxial active regions are formed from the source and drain regions by a selective epitaxy process. The assembly of the gate structure and the gate spacer is cut into multiple portions employing a cut mask and an etch to form multiple gate assemblies. Each gate assembly includes a gate structure portion and two disjoined gate spacer portions laterally spaced by the gate structure portion. Portions of the epitaxial active regions can be removed from around sidewalls of the gate spacers to prevent electrical shorts among the epitaxial active regions. A dielectric spacer or a dielectric liner may be employed to limit areas in which metal semiconductor alloys are formed.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: June 26, 2018
    Assignee: International Business Machines Corporation
    Inventors: Xiuyu Cai, Kangguo Cheng, Johnathan E. Faltermeier, Ali Khakifirooz, Theodorus E. Standaert, Ruilong Xie
  • Publication number: 20180145150
    Abstract: A semiconductor structure includes a semiconductor substrate having an outer surface; a plurality of oxide regions, located outward of the outer surface, and defining a plurality of metal-gate-stack-receiving cavities; and a liner interspersed between the plurality of oxide regions and the semiconductor substrate and between the plurality of oxide regions and the plurality of metal-gate-stack-receiving cavities. A layer of high-K material is deposited over the semiconductor structure, including on outer surfaces of the plurality of oxide regions, outer edges of the liner, on walls of the plurality of metal-gate-stack-receiving cavities, and on the outer surface of the semiconductor substrate within the plurality of metal-gate-stack-receiving cavities. The layer of high-K material is chamfered to remove same from the outer surfaces of the plurality of oxide regions, the outer edges of the liner, and partially down the walls of the plurality of metal-gate-stack-receiving cavities.
    Type: Application
    Filed: December 30, 2017
    Publication date: May 24, 2018
    Inventors: Takashi Ando, Veeraraghavan S. Basker, Johnathan E. Faltermeier, Hemanth Jagannathan, Tenko Yamashita
  • Publication number: 20180083117
    Abstract: A method of forming a semiconductor structure includes depositing a gate dielectric layer lining a recess of a gate structure formed on a substrate with a first portion of the gate dielectric layer covering sidewalls of the recess and a second portion of the gate dielectric layer covering a bottom of the recess. A protective layer is deposited above the gate dielectric layer and then recessed selectively to the gate dielectric layer so that a top surface of the protective layer is below of the recess. The first portion of the gate dielectric layer is recessed until a top of the first portion of the gate dielectric layer is approximately coplanar with the top surface of the protective layer. The protective layer is removed and a conductive barrier is deposited above the recessed first portion of the gate dielectric layer to cut a diffusion path to the gate dielectric layer.
    Type: Application
    Filed: November 29, 2017
    Publication date: March 22, 2018
    Inventors: Takashi Ando, Johnathan E. Faltermeier, Su Chen Fan, Sivananda K. Kanakasabapathy, Injo Ok, Tenko Yamashita
  • Patent number: 9905665
    Abstract: A method of forming a semiconductor structure includes depositing a gate dielectric layer lining a recess of a gate structure formed on a substrate with a first portion of the gate dielectric layer covering sidewalls of the recess and a second portion of the gate dielectric layer covering a bottom of the recess. A protective layer is deposited above the gate dielectric layer and then recessed selectively to the gate dielectric layer so that a top surface of the protective layer is below of the recess. The first portion of the gate dielectric layer is recessed until a top of the first portion of the gate dielectric layer is approximately coplanar with the top surface of the protective layer. The protective layer is removed and a conductive barrier is deposited above the recessed first portion of the gate dielectric layer to cut a diffusion path to the gate dielectric layer.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: February 27, 2018
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Johnathan E. Faltermeier, Su Chen Fan, Sivananda K. Kanakasabapathy, Injo Ok, Tenko Yamashita
  • Patent number: 9865703
    Abstract: A semiconductor structure includes a semiconductor substrate having an outer surface; a plurality of oxide regions, located outward of the outer surface, and defining a plurality of metal-gate-stack-receiving cavities; and a liner interspersed between the plurality of oxide regions and the semiconductor substrate and between the plurality of oxide regions and the plurality of metal-gate-stack-receiving cavities. A layer of high-K material is deposited over the semiconductor structure, including on outer surfaces of the plurality of oxide regions, outer edges of the liner, on walls of the plurality of metal-gate-stack-receiving cavities, and on the outer surface of the semiconductor substrate within the plurality of metal-gate-stack-receiving cavities. The layer of high-K material is chamfered to remove same from the outer surfaces of the plurality of oxide regions, the outer edges of the liner, and partially down the walls of the plurality of metal-gate-stack-receiving cavities.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: January 9, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Veeraraghavan S. Basker, Johnathan E. Faltermeier, Hemanth Jagannathan, Tenko Yamashita
  • Patent number: 9735277
    Abstract: One embodiment provides a method comprising etching a fin of a fin-shaped field effect transistor (FinFET) to form a reduced fin, and laterally etching the reduced fin to form a fin channel including a first fin channel sidewall and a second fin channel sidewall opposing the first fin channel sidewall. The method further comprises forming a first thin dielectric tunnel and a second thin dielectric tunnel on the first fin channel sidewall and the second fin channel sidewall, respectively. Each thin dielectric tunnel prevents lateral epitaxial crystal growth on the fin channel. The method further comprises etching an insulator layer disposed between the fin channel and a substrate of the FinFET to expose portions of a substrate surface of the substrate. A source epitaxy and a drain epitaxy are formed from vertical epitaxial crystal growth on the exposed portions of the substrate surface after epitaxial deposition.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: August 15, 2017
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ramachandra Divakaruni, Johnathan E. Faltermeier, Edward J. Nowak, Kern Rim
  • Publication number: 20170194459
    Abstract: A semiconductor structure includes a semiconductor substrate having an outer surface; a plurality of oxide regions, located outward of the outer surface, and defining a plurality of metal-gate-stack-receiving cavities; and a liner interspersed between the plurality of oxide regions and the semiconductor substrate and between the plurality of oxide regions and the plurality of metal-gate-stack-receiving cavities. A layer of high-K material is deposited over the semiconductor structure, including on outer surfaces of the plurality of oxide regions, outer edges of the liner, on walls of the plurality of metal-gate-stack-receiving cavities, and on the outer surface of the semiconductor substrate within the plurality of metal-gate-stack-receiving cavities. The layer of high-K material is chamfered to remove same from the outer surfaces of the plurality of oxide regions, the outer edges of the liner, and partially down the walls of the plurality of metal-gate-stack-receiving cavities.
    Type: Application
    Filed: December 31, 2015
    Publication date: July 6, 2017
    Inventors: Takashi Ando, Veeraraghavan S. Basker, Johnathan E. Faltermeier, Hemanth Jagannathan, Tenko Yamashita
  • Publication number: 20170170323
    Abstract: One embodiment provides a method comprising etching a fin of a fin-shaped field effect transistor (FinFET) to form a reduced fin, and laterally etching the reduced fin to form a fin channel including a first fin channel sidewall and a second fin channel sidewall opposing the first fin channel sidewall. The method further comprises forming a first thin dielectric tunnel and a second thin dielectric tunnel on the first fin channel sidewall and the second fin channel sidewall, respectively. Each thin dielectric tunnel prevents lateral epitaxial crystal growth on the fin channel. The method further comprises etching an insulator layer disposed between the fin channel and a substrate of the FinFET to expose portions of a substrate surface of the substrate. A source epitaxy and a drain epitaxy are formed from vertical epitaxial crystal growth on the exposed portions of the substrate surface after epitaxial deposition.
    Type: Application
    Filed: October 27, 2016
    Publication date: June 15, 2017
    Inventors: Kangguo Cheng, Ramachandra Divakaruni, Johnathan E. Faltermeier, Edward J. Nowak, Kern Rim
  • Publication number: 20170140994
    Abstract: A gate structure straddling a plurality of semiconductor material portions is formed. Source regions and drain regions are formed in the plurality of semiconductor material portions, and a gate spacer laterally surrounding the gate structure is formed. Epitaxial active regions are formed from the source and drain regions by a selective epitaxy process. The assembly of the gate structure and the gate spacer is cut into multiple portions employing a cut mask and an etch to form multiple gate assemblies. Each gate assembly includes a gate structure portion and two disjoined gate spacer portions laterally spaced by the gate structure portion. Portions of the epitaxial active regions can be removed from around sidewalls of the gate spacers to prevent electrical shorts among the epitaxial active regions. A dielectric spacer or a dielectric liner may be employed to limit areas in which metal semiconductor alloys are formed.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Inventors: Xiuyu Cai, Kangguo Cheng, Johnathan E. Faltermeier, Ali Khakifirooz, Theodorus E. Standaert, Ruilong Xie
  • Patent number: 9633906
    Abstract: A gate structure straddling a plurality of semiconductor material portions is formed. Source regions and drain regions are formed in the plurality of semiconductor material portions, and a gate spacer laterally surrounding the gate structure is formed. Epitaxial active regions are formed from the source and drain regions by a selective epitaxy process. The assembly of the gate structure and the gate spacer is cut into multiple portions employing a cut mask and an etch to form multiple gate assemblies. Each gate assembly includes a gate structure portion and two disjoined gate spacer portions laterally spaced by the gate structure portion. Portions of the epitaxial active regions can be removed from around sidewalls of the gate spacers to prevent electrical shorts among the epitaxial active regions. A dielectric spacer or a dielectric liner may be employed to limit areas in which metal semiconductor alloys are formed.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: April 25, 2017
    Assignees: International Business Machines Corporation, GlobalFoundries, Inc.
    Inventors: Xiuyu Cai, Kangguo Cheng, Johnathan E. Faltermeier, Ali Khakifirooz, Theodorus E. Standaert, Ruilong Xie
  • Patent number: 9559009
    Abstract: A gate structure straddling a plurality of semiconductor material portions is formed. Source regions and drain regions are formed in the plurality of semiconductor material portions, and a gate spacer laterally surrounding the gate structure is formed. Epitaxial active regions are formed from the source and drain regions by a selective epitaxy process. The assembly of the gate structure and the gate spacer is cut into multiple portions employing a cut mask and an etch to form multiple gate assemblies. Each gate assembly includes a gate structure portion and two disjoined gate spacer portions laterally spaced by the gate structure portion. Portions of the epitaxial active regions can be removed from around sidewalls of the gate spacers to prevent electrical shorts among the epitaxial active regions. A dielectric spacer or a dielectric liner may be employed to limit areas in which metal semiconductor alloys are formed.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: January 31, 2017
    Assignees: International Business Machines Corporation, GLOBALFOUNDRIES, INC.
    Inventors: Xiuyu Cai, Kangguo Cheng, Johnathan E. Faltermeier, Ali Khakifirooz, Theodorus E. Standaert, Ruilong Xie
  • Patent number: 9537011
    Abstract: One embodiment provides a method comprising etching a fin of a fin-shaped field effect transistor (FinFET) to form a reduced fin, and laterally etching the reduced fin to form a fin channel including a first fin channel sidewall and a second fin channel sidewall opposing the first fin channel sidewall. The method further comprises forming a first thin dielectric tunnel and a second thin dielectric tunnel on the first fin channel sidewall and the second fin channel sidewall, respectively. Each thin dielectric tunnel prevents lateral epitaxial crystal growth on the fin channel. The method further comprises etching an insulator layer disposed between the fin channel and a substrate of the FinFET to expose portions of a substrate surface of the substrate. A source epitaxy and a drain epitaxy are formed from vertical epitaxial crystal growth on the exposed portions of the substrate surface after epitaxial deposition.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: January 3, 2017
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ramachandra Divakaruni, Johnathan E. Faltermeier, Edward J. Nowak, Kern Rim
  • Patent number: 9472408
    Abstract: A method of reducing a migration of oxygen into a high-k dielectric layer of a semiconducting device is disclosed. An oxide layer of the semiconducting device is deposited on a substrate. A chemical composition of a top portion of the oxide layer is altered. The high-k dielectric layer is deposited on the top portion of the oxide layer to form the semiconducting device. The altered chemical composition of the top portion of the oxide layer reduces migration of oxygen into the high-k dielectric layer.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: October 18, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Veeraraghavan S. Basker, Johnathan E. Faltermeier, Hemanth Jagannathan, Tenko Yamashita
  • Patent number: 9412596
    Abstract: A method of reducing a migration of oxygen into a high-k dielectric layer of a semiconducting device is disclosed. An oxide layer of the semiconducting device is deposited on a substrate. A chemical composition of a top portion of the oxide layer is altered. The high-k dielectric layer is deposited on the top portion of the oxide layer to form the semiconducting device. The altered chemical composition of the top portion of the oxide layer reduces migration of oxygen into the high-k dielectric layer.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: August 9, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Veeraraghavan S. Basker, Johnathan E. Faltermeier, Hemanth Jagannathan, Tenko Yamashita
  • Publication number: 20160225628
    Abstract: A method of reducing a migration of oxygen into a high-k dielectric layer of a semiconducting device is disclosed. An oxide layer of the semiconducting device is deposited on a substrate. A chemical composition of a top portion of the oxide layer is altered. The high-k dielectric layer is deposited on the top portion of the oxide layer to form the semiconducting device. The altered chemical composition of the top portion of the oxide layer reduces migration of oxygen into the high-k dielectric layer.
    Type: Application
    Filed: January 30, 2015
    Publication date: August 4, 2016
    Inventors: Takashi Ando, Veeraraghavan S. Basker, Johnathan E. Faltermeier, Hemanth Jagannathan, Tenko Yamashita
  • Publication number: 20160225629
    Abstract: A method of reducing a migration of oxygen into a high-k dielectric layer of a semiconducting device is disclosed. An oxide layer of the semiconducting device is deposited on a substrate. A chemical composition of a top portion of the oxide layer is altered. The high-k dielectric layer is deposited on the top portion of the oxide layer to form the semiconducting device. The altered chemical composition of the top portion of the oxide layer reduces migration of oxygen into the high-k dielectric layer.
    Type: Application
    Filed: March 7, 2016
    Publication date: August 4, 2016
    Inventors: Takashi Ando, Veeraraghavan S. Basker, Johnathan E. Faltermeier, Hemanth Jagannathan, Tenko Yamashita
  • Publication number: 20160197157
    Abstract: A method of forming a semiconductor structure includes depositing a gate dielectric layer lining a recess of a gate structure formed on a substrate with a first portion of the gate dielectric layer covering sidewalls of the recess and a second portion of the gate dielectric layer covering a bottom of the recess. A protective layer is deposited above the gate dielectric layer and then recessed selectively to the gate dielectric layer so that a top surface of the protective layer is below of the recess. The first portion of the gate dielectric layer is recessed until a top of the first portion of the gate dielectric layer is approximately coplanar with the top surface of the protective layer. The protective layer is removed and a conductive barrier is deposited above the recessed first portion of the gate dielectric layer to cut a diffusion path to the gate dielectric layer.
    Type: Application
    Filed: March 11, 2016
    Publication date: July 7, 2016
    Inventors: Takashi Ando, Johnathan E. Faltermeier, Su Chen Fan, Sivananda K. Kanakasabapathy, Injo Ok, Tenko Yamashita
  • Patent number: 9337315
    Abstract: A FinFET having spacers with a substantially uniform profile along the length of a gate stack which covers a portion of a fin of semiconductor material formed on a substrate is provided by depositing spacer material conformally on both the fins and gate stack and performing an angled ion impurity implant approximately parallel to the gate stack to selectively cause damage to only spacer material deposited on the fin. Due to the damage caused by the angled implant, the spacer material on the fins can be etched with high selectivity to the spacer material on the gate stack.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: May 10, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Bruce B. Doris, Johnathan E. Faltermeier
  • Patent number: 9331174
    Abstract: A semiconductor substrate including a field effect transistor (FET) and a method of producing the same wherein a stressor is provided in a recess before the source/drain region is formed. The device has an increased carrier mobility in the channel region adjacent to the gate electrode.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: May 3, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Bruce B. Doris, Johnathan E. Faltermeier, Lahir M. Shaik Adam, Balasubramanian S. Pranatharthi Haran