Patents by Inventor Jong Gill
Jong Gill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250032032Abstract: Described herein are methods, devices, and systems for identifying false R-R intervals, and false arrhythmia detections, resulting from R-wave undersensing or intermittent AV conduction block. Each of one or more of the R-R intervals is classified as being a false R-R interval in response to a duration the R-R interval being greater than a first specific threshold, and the duration the R-R interval being within a second specified threshold of being an integer multiple of at least X other R-R intervals for which information is obtained, wherein the integer multiple is at least 2, and wherein X is a specified integer that is 1 or greater. When performed for R-R intervals in a window leading up to a detection of a potential arrhythmic episode, results of the classifying can be used to determine whether the potential arrhythmic episode was a false positive detection.Type: ApplicationFiled: October 17, 2024Publication date: January 30, 2025Applicant: Pacesetter, Inc.Inventors: Nima Badie, Fujian Qu, Jong Gill
-
Publication number: 20240424307Abstract: An implantable medical device (IMD) that can include a HS sensor configured to sense heart sound (HS) signals along an axis over a first period of time and a filtering assembly configured to filter the HS signals utilizing first and second bandwidths to output first and second bandwidth HS components. The IMD can also include one or more processors that can be configured to identify a first characteristic of interest (COI) of a heartbeat from the first bandwidth HS component and identify a second COI of the heartbeat from the second bandwidth HS component. The one or more processors can also be configured to select one of the first and second bandwidths based on a comparison of the first and second COI, obtain additional HS signals during a second period of time and utilize the one of the first and second bandwidths selected to filter the additional HS signals.Type: ApplicationFiled: June 14, 2024Publication date: December 26, 2024Inventors: Nikolaos Politis, Jong Gill
-
Patent number: 12161474Abstract: Described herein are methods, devices, and systems for identifying false R-R intervals, and false arrhythmia detections, resulting from R-wave undersensing or intermittent AV conduction block. Each of one or more of the R-R intervals is classified as being a false R-R interval in response to a duration the R-R interval being greater than a first specific threshold, and the duration the R-R interval being within a second specified threshold of being an integer multiple of at least X other R-R intervals for which information is obtained, wherein the integer multiple is at least 2, and wherein X is a specified integer that is 1 or greater. When performed for R-R intervals in a window leading up to a detection of a potential arrhythmic episode, results of the classifying can be used to determine whether the potential arrhythmic episode was a false positive detection.Type: GrantFiled: May 13, 2021Date of Patent: December 10, 2024Assignee: Pacesetter, Inc.Inventors: Nima Badie, Fujian Qu, Jong Gill
-
Patent number: 12161503Abstract: A system and method for monitoring heart function based on heart sounds (HS) is provided. The system includes electrodes configured to sense electrical cardiac activity (CA) signals over a period of time. An HS sensor is configured to sense HS signals over the period of time. The system includes memory to store specific executable instructions and includes one or more processors that, when executing the specific executable instructions, is configured to: identify a characteristic of interest (COI) of a heartbeat from the CA signals. The processors overlay a HS search window onto an HS segment of the HS signals based on the COI from the CA signals and calculate a center of mass (COM) for at least one of S1 or S2 HS based on the HS segment of the HS signals within the search window to obtain a corresponding at least one of S1 COM or S2 COM.Type: GrantFiled: February 8, 2022Date of Patent: December 10, 2024Assignee: Pacesetter, Inc.Inventors: Nikolaos Politis, Jan O. Mangual-Soto, Louis-Philippe Richer, Jong Gill, Fady Dawoud
-
Patent number: 12150770Abstract: Described herein are methods, devices, and systems that improve arrhythmia episode detection specificity, such as, but not limited to, atrial fibrillation (AF) episode detection specificity. Such a method can include obtaining an ordered list of R-R intervals within a window leading up to a detection of a potential arrhythmia episode, determining a measure of a dominant repeated R-R interval pattern within the window, and comparing the measure of the dominant repeated R-R interval pattern to a pattern threshold. If the measure of the dominant repeated R-R interval pattern is below the pattern threshold, that is indicative of a regularly irregular pattern being present, and there is a determination that the detection of the potential arrhythmia episode does not correspond to an actual arrhythmia episode. Such embodiments can beneficially be used to significantly reduce the number of false positive arrhythmia detections.Type: GrantFiled: March 28, 2023Date of Patent: November 26, 2024Assignee: Pacesetter, Inc.Inventors: Nima Badie, Fujian Qu, Jong Gill
-
Publication number: 20240341662Abstract: Described herein are methods, devices, and systems that monitor heart rate and/or for arrhythmic episodes based on sensed intervals that can include true R-R intervals as well as over-sensed R-R intervals. True R-R intervals are initially identified from an ordered list of the sensed intervals by comparing individual sensed intervals to a sum of an immediately preceding two intervals, and/or an immediately following two intervals. True R-R intervals are also identified by comparing sensed intervals to a mean or median of durations of sensed intervals already identified as true R-R intervals. Individual intervals in a remaining ordered list of sensed intervals (from which true R-R intervals have been removed) are classified as either a short interval or a long interval, and over-sensed R-R intervals are identified based on the results thereof. Such embodiments can be used, e.g., to reduce the reporting of and/or inappropriate responses to false positive tachycardia detections.Type: ApplicationFiled: June 17, 2024Publication date: October 17, 2024Applicant: Pacesetter, Inc.Inventors: Nima Badie, Fujian Qu, Jong Gill
-
Publication number: 20240298972Abstract: The present disclosure provides systems and methods for confirming cardiac events based on heart sounds. An implantable medical device includes a sensing component configured to acquire a signal, and a processing component communicatively coupled to the sensing component, the processing component configured to receive the signal from the sensing component, analyze the received signal to detect the presence or absence of at least one heart sound, and confirm whether an initial detection of a cardiac event is accurate based on the detected presence or absence of the at least one heart sound.Type: ApplicationFiled: May 16, 2024Publication date: September 12, 2024Inventors: Jong Gill, Gene A. Bornzin, Stuart Rosenberg, Fujian Qu
-
Publication number: 20240298969Abstract: An implantable medical device (IMD) includes one or more sensing circuits configured to sense one or more physiological characteristics and to generate physiological data indicative of the one or more physiological characteristics. An input is configured to receive a trigger. Responsive to receiving the trigger, a continuous data collection mode (CDCM) comprising a predetermined sampling rate is enabled. Physiological data is continuously generated. The physiological data is continuously stored in a buffer memory at the predetermined sampling rate for a duration of a collection session associated with the CDCM. The amount of data stored in the buffer memory during the collection session, including the physiological data, exceeds a capacity of the buffer memory. Connect and transmit operations are performed at a periodic communication interval during the collection session to connect with the external device and transmit at least a portion of the physiological data stored in the buffer memory.Type: ApplicationFiled: February 21, 2024Publication date: September 12, 2024Inventors: Jong Gill, Fujian Qu, Joanna Urbanski, Simon Skup
-
Publication number: 20240302577Abstract: A lens includes an optical portion configured to refract light, and a flange portion extending from the optical portion, wherein a first region having first surface roughness, a second region having second surface roughness, and a third region having third surface roughness are sequentially disposed from the optical portion toward the flange portion, on at least one of an object-side surface and an image-side surface of the flange portion, the first surface roughness and the third surface roughness are greater than the second surface roughness, and a light blocking portion is disposed in the second region.Type: ApplicationFiled: January 18, 2024Publication date: September 12, 2024Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.Inventors: Dong Shin YANG, Jong Gill LEE, Deok Seok OH
-
Patent number: 12042292Abstract: Described herein are methods, devices, and systems that monitor heart rate and/or for arrhythmic episodes based on sensed intervals that can include true R-R intervals as well as over-sensed R-R intervals. True R-R intervals are initially identified from an ordered list of the sensed intervals by comparing individual sensed intervals to a sum of an immediately preceding two intervals, and/or an immediately following two intervals. True R-R intervals are also identified by comparing sensed intervals to a mean or median of durations of sensed intervals already identified as true R-R intervals. Individual intervals in a remaining ordered list of sensed intervals (from which true R-R intervals have been removed) are classified as either a short interval or a long interval, and over-sensed R-R intervals are identified based on the results thereof. Such embodiments can be used, e.g., to reduce the reporting of and/or inappropriate responses to false positive tachycardia detections.Type: GrantFiled: December 27, 2022Date of Patent: July 23, 2024Assignee: Pacesetter, Inc.Inventors: Nima Badie, Fujian Qu, Jong Gill
-
Publication number: 20240180484Abstract: Implantable systems, and methods for use therewith, monitor a patient's arterial blood pressure without requiring an intravascular pressure transducer. A plurality of calibrations factors are stored, each of which is associated with a respective one of a plurality of different postures, activity levels, or HR ranges, or different combinations thereof. A signal indicative of activity of the patient's heart, and a signal indicative of changes in arterial blood volume of the patient are obtained, and a pulse arrival time (PAT) value is determined. A current posture, activity level, and/or HR of the patient is/are determined and used to identify stored calibration factor(s) that correspond thereto. Values indicative of the patient's arterial blood pressure is/are determined based on the PAT value and the stored calibration factor(s) identified based on the patient's current posture, activity level, and/or HR. Such value(s) and/or changes thereto can be used to trigger and/or adjust therapy.Type: ApplicationFiled: October 4, 2023Publication date: June 6, 2024Applicant: Pacesetter, Inc.Inventors: Xing Pei, Gene A. Bornzin, Alexander R. Bornzin, Jong Gill, Wenwen Li
-
Patent number: 11980472Abstract: A system for verifying a candidate pathologic episode of a patient is provided. The system includes an accelerometer configured to be implanted in the patient, the accelerometer configured to obtain accelerometer data along at least one axis. The system also includes a memory configured to store program instructions and one or more processors. When executing the program instructions, the one or more processors are configured to obtain a biological signal and identify a candidate pathologic episode based on the biological signal, analyze the accelerometer data to identify a physical action experienced by the patient, and verify the candidate pathologic episode based on the physical action.Type: GrantFiled: March 5, 2021Date of Patent: May 14, 2024Assignee: Pacesetter, Inc.Inventors: Jong Gill, Kyungmoo Ryu, Fady Dawoud
-
Patent number: 11975208Abstract: A computer implemented method for determining heart arrhythmias based on cardiac activity that includes under control of one or more processors of an implantable medical device (IMD) configured with specific executable instructions to obtain far field cardiac activity (CA) signals at electrodes located remote from the heart, and obtain acceleration signatures, at an accelerometer of the IMD, indicative of heart sounds generated during the cardiac beats. The IMD is also configured with specific executable instructions to declare a candidate arrhythmia based on a characteristic of at least one R-R interval from the cardiac beats, and evaluate the acceleration signatures for ventricular events (VEs) to re-assess a presence or absence of at least one R-wave from the cardiac beats and based thereon confirming or denying the candidate arrhythmia.Type: GrantFiled: January 6, 2023Date of Patent: May 7, 2024Assignee: Pacesetter, Inc.Inventors: Jong Gill, Gene Bornzin
-
Publication number: 20240115194Abstract: Described herein are methods, devices, and systems that use electrogram (EGM) or electrocardiogram (ECG) data for sleep apnea detection. An apparatus and method detect potential apnea events (an apnea or hypopnea event) using a signal indicative of cardiac electrical activity of a patient's heart, such as an EGM or ECG. Described herein are also methods, devices, and systems for classifying a patient as being asleep or awake, which can be used to selectively enable and disable sleep apnea detection monitoring, as well as in other manners.Type: ApplicationFiled: December 11, 2023Publication date: April 11, 2024Applicant: Pacesetter, Inc.Inventors: Jong Gill, Prakrit Shrestha, Kyungmoo Ryu
-
Publication number: 20240099641Abstract: A computer implemented method for detecting arrhythmias in cardiac activity including obtaining far field cardiac activity (CA) signals for a series of beats. For at least a portion of the beats, the one or more processors perform, on a beat by beat basis: a) identifying first and second feature of interests (FOI) from a segment of the CA signal that corresponds to a current beat; and b) classifying the current beat into one of first and second groups. The method also includes designating one of the first and second groups to be a primary group based on a relation between the first and second groups, and for the beats in the primary group, selecting one of the first and second FOIs as the R-wave FOI. The method also includes rejecting an arrhythmia detection based on the P-waves detected.Type: ApplicationFiled: December 6, 2023Publication date: March 28, 2024Inventors: Fujian Qu, Nima Badie, Jong Gill
-
Publication number: 20240081734Abstract: Described herein are apparatuses and methods for classifying a patient as being asleep or awake. Such an apparatus can include an accelerometer and a processor. The accelerometer, alone or in combination with the processor, is used to determine an activity level of the patient and a posture of the patient. The processor is configured to classify the patient as being asleep in response to both (i) the posture of the patient being recumbent or reclined for at least a sleep latency duration, and (ii) the activity level of the patient not exceeding an activity threshold for at least the sleep latency duration; and classify the patient as being awake in response to at least one of (iii) the posture of the patient being upright for at least an awake latency duration, or (iv) the activity level of the patient exceeding the activity threshold for at least the awake latency duration.Type: ApplicationFiled: November 14, 2023Publication date: March 14, 2024Applicant: Pacesetter, Inc.Inventors: Jong Gill, Prakrit Shrestha, Kyungmoo Ryu
-
Publication number: 20240074706Abstract: Computer implemented methods and systems for detecting noise in cardiac activity are provided. The method and system obtain a far field cardiac activity (CA) data set that includes far field CA signals for a series of beats, overlay a segment of the CA signals with a noise search window, and identify turns in the segment of the CA signals. The method and system determine whether the turns exhibit a turn characteristic that exceed a turn characteristic threshold, declare the segment of the CA signals as a noise segment based on the determining operation, shift the noise search window to a next segment of the CA signal and repeat the identifying, determining and declaring operations; and modify the CA signals based on the declaring the noise segments.Type: ApplicationFiled: November 6, 2023Publication date: March 7, 2024Inventors: Jong Gill, Fujian Qu, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
-
Patent number: 11896387Abstract: Described herein are methods, devices, and systems that use electrogram (EGM) or electrocardiogram (ECG) data for sleep apnea detection. An apparatus and method detect potential apnea events (an apnea or hypopnea event) using a signal indicative of cardiac electrical activity of a patient's heart, such as an EGM or ECG. Variations in one or more morphological or temporal features of the signal over several cardiac cycles are determined and used to detect a potential apnea event in a measurement period. Checks can then be made for a number of factors which could result in a false detection of an apnea event and if such factors are not present, an apnea event is recorded. Described herein are also methods, devices, and systems for classifying a patient as being asleep or awake, which can be used to selectively enable and disable sleep apnea detection monitoring, as well as in other manners.Type: GrantFiled: April 20, 2021Date of Patent: February 13, 2024Assignee: Pacesetter, Inc.Inventors: Jong Gill, Prakrit Shrestha, Kyungmoo Ryu
-
Patent number: 11890115Abstract: Computer implemented methods, devices and systems for monitoring a trend in heart failure (HF) progression are provided. The method comprises sensing left ventricular (LV) activation events at multiple LV sensing sites along a multi-electrode LV lead. The activation events are generated in response to an intrinsic or paced ventricular event. The method implements program instructions on one or more processors for automatically determining a conduction pattern (CP) across the LV sensing sites based on the LV activation events, identifying morphologies (MP) for cardiac signals associated with the LV activation events and repeating the sensing, determining and identifying operations, at select intervals, to build a CP collection and an MP collection. The method calculates an HF trend based on the CP collection and MP collection and classifies a patient condition based on the HF trend to form an HF assessment.Type: GrantFiled: June 6, 2022Date of Patent: February 6, 2024Assignee: Pacesetter, Inc.Inventors: Nima Badie, Jan O. Mangual-Soto, Luke C. McSpadden, Louis-Philippe Richer, Jong Gill
-
Patent number: 11883178Abstract: A computer implemented method for detecting arrhythmias in cardiac activity including obtaining far field cardiac activity (CA) signals for a series of beats. For at least a portion of the beats, the one or more processors perform, on a beat by beat basis: a) identifying first and second feature of interests (FOI) from a segment of the CA signal that corresponds to a current beat; and b) classifying the current beat into one of first and second groups. The method also includes designating one of the first and second groups to be a primary group based on a relation between the first and second groups, and for the beats in the primary group, selecting one of the first and second FOIs as the R-wave FOI. The method also includes rejecting an arrhythmia detection based on the P-waves detected.Type: GrantFiled: February 18, 2022Date of Patent: January 30, 2024Assignee: Pacesetter, Inc.Inventors: Fujian Qu, Nima Badie, Jong Gill