Patents by Inventor Jong Gill

Jong Gill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220361837
    Abstract: A system and method for monitoring heart function based on heart sounds (HS) is provided. The system includes electrodes configured to sense electrical cardiac activity (CA) signals over a period of time. An HS sensor is configured to sense HS signals over the period of time. The system includes memory to store specific executable instructions and includes one or more processors that, when executing the specific executable instructions, is configured to: identify a characteristic of interest (COI) of a heartbeat from the CA signals. The processors overlay a HS search window onto an HS segment of the HS signals based on the COI from the CA signals and calculate a center of mass (COM) for at least one of S1 or S2 HS based on the HS segment of the HS signals within the search window to obtain a corresponding at least one of S1 COM or S2 COM.
    Type: Application
    Filed: February 8, 2022
    Publication date: November 17, 2022
    Inventors: Nikolaos Politis, Jan O. Mangual-Soto, Louis-Philippe Richer, Jong Gill, Fady Dawoud
  • Publication number: 20220361818
    Abstract: A leadless implantable medical device (IMD) and method of using same are provided. The IMD comprises: a housing, a fixation element, electrodes configured to sense electrical cardiac activity (CA) signals over a period of time, an HS sensor configured to sense HS signals over the period of time, memory to store specific executable instructions, and one or more processors. The one or more processors and method: identify a characteristic of interest (COI) of a heartbeat from the CA signals, calculate a center of mass (COM) for at least one HS based on the HS signals to obtain a corresponding at least one HS COM, and calculate at least one of a therapy-related (TR) delay or a sensing-related (SR) blanking interval (BI) based on the at least one HS COM.
    Type: Application
    Filed: February 8, 2022
    Publication date: November 17, 2022
    Inventors: Nikolaos Politis, Jan O. Mangual-Soto, Louis-Philippe Richer, Jong Gill, Fady Dawoud
  • Publication number: 20220296151
    Abstract: Computer implemented methods, devices and systems for monitoring a trend in heart failure (HF) progression are provided. The method comprises sensing left ventricular (LV) activation events at multiple LV sensing sites along a multi-electrode LV lead. The activation events are generated in response to an intrinsic or paced ventricular event. The method implements program instructions on one or more processors for automatically determining a conduction pattern (CP) across the LV sensing sites based on the LV activation events, identifying morphologies (MP) for cardiac signals associated with the LV activation events and repeating the sensing, determining and identifying operations, at select intervals, to build a CP collection and an MP collection. The method calculates an HF trend based on the CP collection and MP collection and classifies a patient condition based on the HF trend to form an HF assessment.
    Type: Application
    Filed: June 6, 2022
    Publication date: September 22, 2022
    Inventors: Nima Badie, Jan O. Mangual-Soto, Luke C. McSpadden, Louis-Philippe Richer, Jong Gill
  • Patent number: 11426112
    Abstract: A computer implemented method and system for confirming a device documented arrhythmia in cardiac activity are provided. The method is under control of one or more processors configured with executable instructions. The method obtains a cardiac activity (CA) data set that includes CA signals for a series of cardiac events and includes device documented (DD) markers within the series of cardiac events. The device documented markers are indicative of atrial fibrillation (AF) detected by the ICM utilizing an on-board R-R interval irregularity (ORI) process to analyze the CA signals. The method applies a feature enhancement function to the CA signals to form modified CA signals with enhanced sinus features and analyzes the enhanced sinus features in the modified CA signals. The method utilized a confirmatory feature detection process to identify false AF detection by the ORI process. The method records a result of the analysis identifying false AF detection by the ORI process.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: August 30, 2022
    Assignee: PACESETTER, INC.
    Inventors: Fujian Qu, Jong Gill, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Patent number: 11369305
    Abstract: Computer implemented methods, devices and systems for monitoring a trend in heart failure (HF) progression are provided. The method comprises sensing left ventricular (LV) activation events at multiple LV sensing sites along a multi-electrode LV lead. The activation events are generated in response to an intrinsic or paced ventricular event. The method implements program instructions on one or more processors for automatically determining a conduction pattern (CP) across the LV sensing sites based on the LV activation events, identifying morphologies (MP) for cardiac signals associated with the LV activation events and repeating the sensing, determining and identifying operations, at select intervals, to build a CP collection and an MP collection. The method calculates an HF trend based on the CP collection and MP collection and classifies a patient condition based on the HF trend to form an HF assessment.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: June 28, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Nima Badie, Jan O. Mangual-Soto, Luke C. McSpadden, Louis-Philippe Richer, Jong Gill
  • Publication number: 20220167906
    Abstract: A computer implemented method for detecting arrhythmias in cardiac activity including obtaining far field cardiac activity (CA) signals for a series of beats. For at least a portion of the beats, the one or more processors perform, on a beat by beat basis: a) identifying first and second feature of interests (FOI) from a segment of the CA signal that corresponds to a current beat; and b) classifying the current beat into one of first and second groups. The method also includes designating one of the first and second groups to be a primary group based on a relation between the first and second groups, and for the beats in the primary group, selecting one of the first and second FOIs as the R-wave FOI. The method also includes rejecting an arrhythmia detection based on the P-waves detected.
    Type: Application
    Filed: February 18, 2022
    Publication date: June 2, 2022
    Inventors: Fujian Qu, Nima Badie, Jong Gill
  • Patent number: 11327270
    Abstract: A lens assembly includes a lens including an optical portion refracting light and a flange portion extended along a periphery of at least a portion of the optical portion, and a lens barrel accommodating the lens. The lens includes a first D-cut portion on one side surface of the flange portion spaced apart from the lens barrel and a second D-cut portion on another side surface of the flange portion spaced apart from the lens barrel, wherein the first D-cut portion and the second D-cut portion each include first inclined surfaces, and the first inclined surfaces are spaced apart from respective ends of the first D-cut portion and the second D-cut portion by a predetermined interval.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: May 10, 2022
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Dong Shin Yang, Jong Gill Lee, Hwan Soo Park, Ju Sung Park, Sot Eum Seo
  • Publication number: 20220104774
    Abstract: Embodiments disclosed herein use multiple AF discriminators to determine whether to classify an AF detection as a false positive. One method includes detecting R-waves within an EGM or ECG signal, determining R?R intervals based on the R-waves, detecting AF based on the R?R intervals, and using one or more time-based AF discriminators to analyze one or more temporal features of the EGM or ECG signal within a window leading up to the AF detection to thereby determine whether to classify the AF detection as a false positive. In response to not classifying the AF detection as a false positive using the one or more time-based AF discriminators, one or more morphology-based AF discriminators are used to analyze one or more morphological features of the EGM or ECG signal within the window leading up to the AF detection to thereby determine whether to classify the AF detection as a false positive.
    Type: Application
    Filed: August 20, 2021
    Publication date: April 7, 2022
    Applicant: Pacesetter, Inc.
    Inventors: Fujian Qu, Nima Badie, Jong Gill
  • Publication number: 20220105346
    Abstract: Systems and methods are provided for detecting arrhythmias in cardiac activity is provided. The systems and methods include measuring conduction delays between an atria (A) and multiple left ventricular (LV) electrodes to obtain multiple intrinsic A/LV intervals, measuring conduction delays between a right ventricular (RV) and the multiple LV electrodes to obtain multiple intrinsic VV intervals. The systems and methods include calculating a first atrial ventricular (AV) delay based on at least one of the intrinsic A/LV intervals, and calculating a second AV delay based on at least one of the intrinsic VV intervals. The systems and methods include selecting a biventricular (BiV) pacing mode or an LV only pacing mode based on a relation between the first and second AV delays, and delivering a pacing therapy based on the selecting operation.
    Type: Application
    Filed: December 16, 2021
    Publication date: April 7, 2022
    Inventors: Jan O. Mangual-Soto, Nima Badie, Luke C. McSpadden, Jong Gill, Louis-Philippe Richer
  • Patent number: 11291400
    Abstract: A computer implemented method and system to detect P-waves in cardiac activity is provided. The system includes memory to store specific executable instructions. One or more processors are configured to execute the specific executable instructions for obtaining far field cardiac activity (CA) signals for a series of beats, applying a P-wave template to at least one sub-segment of the CA signals to obtain an alignment indicator and calculating an amplitude dependence (AD) indicator based at least in part on the P-wave template and the at least one sub-segment. The system analyzes the alignment indicator based on a first criteria, compares the AD indicator with a second criteria, designates a candidate P-wave to be an actual P-wave based on the analyzing and comparing and records results of the designating.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: April 5, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Gene A. Bornzin, Chunlan Jiang, Jong Gill, Xiaoyi Min, Kyungmoo Ryu, Gabriel A. Mouchawar
  • Patent number: 11284828
    Abstract: A computer implemented method for detecting arrhythmias in cardiac activity including obtaining far field cardiac activity (CA) signals for a series of beats. For at least a portion of the beats, the one or more processors perform, on a beat by beat basis: a) identifying first and second feature of interests (FOI) from a segment of the CA signal that corresponds to a current beat; and b) classifying the current beat into one of first and second groups. The method also includes designating one of the first and second groups to be a primary group based on a relation between the first and second groups, and for the beats in the primary group, selecting one of the first and second FOIs as the R-wave FOI. The method also includes rejecting an arrhythmia detection based on the P-waves detected.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: March 29, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Fujian Qu, Nima Badie, Jong Gill
  • Publication number: 20220088383
    Abstract: A computer implemented method for detecting pocket stability for an implantable cardiac monitor, including under control of one or more processors in the ICM, collecting impedance data over at least one cardiac cycle. The impedance data is processed to separate an impedance waveform that varies over the at least one cardiac cycle in a manner representative of cardiac functionality over the at least one cardiac cycle. A characteristic of interest is analyzed from the impedance waveform over the at least one cardiac cycle. A pocket stability state of the ICM is identified and recorded based on the analyzing operation.
    Type: Application
    Filed: December 2, 2021
    Publication date: March 24, 2022
    Inventors: Jong Gill, Fujian Qu, Stuart Rosenberg
  • Publication number: 20220047177
    Abstract: A computer implemented method for detecting arrhythmias in cardiac activity including obtaining far field cardiac activity (CA) signals for a series of beats. For at least a portion of the beats, the one or more processors perform, on a beat by beat basis: a) identifying first and second feature of interests (FOI) from a segment of the CA signal that corresponds to a current beat; and b) classifying the current beat into one of first and second groups. The method also includes designating one of the first and second groups to be a primary group based on a relation between the first and second groups, and for the beats in the primary group, selecting one of the first and second FOIs as the R-wave FOI. The method also includes rejecting an arrhythmia detection based on the P-waves detected.
    Type: Application
    Filed: August 12, 2020
    Publication date: February 17, 2022
    Inventors: Fujian Qu, Nima Badie, Jong Gill
  • Patent number: 11235158
    Abstract: Systems and methods are provided for detecting arrhythmias in cardiac activity is provided. The systems and methods include measuring conduction delays between an atria (A) and multiple left ventricular (LV) electrodes to obtain multiple intrinsic A/LV intervals, measuring conduction delays between a right ventricular (RV) and the multiple LV electrodes to obtain multiple intrinsic VV intervals. The systems and methods include calculating a first atrial ventricular (AV) delay based on at least one of the intrinsic A/LV intervals, and calculating a second AV delay based on at least one of the intrinsic VV intervals. The systems and methods include selecting a biventricular (BiV) pacing mode or an LV only pacing mode based on a relation between the first and second AV delays, and delivering a pacing therapy based on the selecting operation.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: February 1, 2022
    Assignee: PACESETTER, INC.
    Inventors: Jan O. Mangual-Soto, Nima Badie, Luke C. McSpadden, Jong Gill, Louis-Philippe Richer
  • Patent number: 11219767
    Abstract: A computer implemented method for detecting pocket stability for an implantable cardiac monitor, including under control of one or more processors in the ICM, collecting impedance data over at least one cardiac cycle. The impedance data is processed to separate an impedance waveform that varies over the at least one cardiac cycle in a manner representative of cardiac functionality over the at least one cardiac cycle. A characteristic of interest is analyzed from the impedance waveform over the at least one cardiac cycle. A pocket stability state of the ICM is identified and recorded based on the analyzing operation.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: January 11, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Jong Gill, Fujian Qu, Stuart Rosenberg
  • Publication number: 20210369175
    Abstract: Described herein are methods, devices, and systems for improving R-wave detection sensitivity and positive predictive value, and for improving arrhythmia detection accuracy. Certain embodiments involve determining whether to classify a potential R-wave as a false R-wave (or more specifically, an over-sensed P-wave) by determining a measure of magnitude of a first portion of the signal corresponding to a first window following the potential R-wave, determining the measure of magnitude of a second portion of the signal corresponding to a second window following the first window, and classifying the potential R-wave as a false R-wave if the measure of magnitude of the second portion of the signal is at least a specified extent larger (e.g., at least 3 times larger) than the measure of magnitude of the first portion of the signal. Certain embodiments also involve adjusting an R-wave marker for a potential R-wave that is classified as a false R-wave.
    Type: Application
    Filed: April 6, 2021
    Publication date: December 2, 2021
    Applicant: Pacesetter, Inc.
    Inventors: Nima Badie, Fujian Qu, Jong Gill
  • Publication number: 20210369191
    Abstract: Described herein are methods, devices, and systems that use electrogram (EGM) or electrocardiogram (ECG) data for sleep apnea detection. An apparatus and method detect potential apnea events (an apnea or hypopnea event) using a signal indicative of cardiac electrical activity of a patient's heart, such as an EGM or ECG. Variations in one or more morphological or temporal features of the signal over several cardiac cycles are determined and used to detect a potential apnea event in a measurement period. Checks can then be made for a number of factors which could result in a false detection of an apnea event and if such factors are not present, an apnea event is recorded. Described herein are also methods, devices, and systems for classifying a patient as being asleep or awake, which can be used to selectively enable and disable sleep apnea detection monitoring, as well as in other manners.
    Type: Application
    Filed: April 20, 2021
    Publication date: December 2, 2021
    Applicant: Pacesetter, Inc.
    Inventors: Jong Gill, Prakrit Shrestha, Kyungmoo Ryu
  • Publication number: 20210369176
    Abstract: Described herein are methods, devices, and systems for identifying false R-R intervals, and false arrhythmia detections, resulting from R-wave undersensing or intermittent AV conduction block. Each of one or more of the R-R intervals is classified as being a false R-R interval in response to a duration the R-R interval being greater than a first specific threshold, and the duration the R-R interval being within a second specified threshold of being an integer multiple of at least X other R-R intervals for which information is obtained, wherein the integer multiple is at least 2, and wherein X is a specified integer that is 1 or greater. When performed for R-R intervals in a window leading up to a detection of a potential arrhythmic episode, results of the classifying can be used to determine whether the potential arrhythmic episode was a false positive detection.
    Type: Application
    Filed: May 13, 2021
    Publication date: December 2, 2021
    Applicant: Pacesetter, Inc.
    Inventors: Nima Badie, Fujian Qu, Jong Gill
  • Publication number: 20210361959
    Abstract: A computer implemented method for determining heart arrhythmias based on cardiac activity that includes under control of one or more processors of an implantable medical device (IMD) configured with specific executable instructions to obtain far field cardiac activity (CA) signals at electrodes located remote from the heart, and obtain acceleration signatures, at an accelerometer of the IMD, indicative of heart sounds generated during the cardiac beats. The IMD is also configured with specific executable instructions to declare a candidate arrhythmia based on a characteristic of at least one R-R interval from the cardiac beats, and evaluate the acceleration signatures for ventricular events (VEs) to re-assess a presence or absence of at least one R-wave from the cardiac beats and based thereon confirming or denying the candidate arrhythmia.
    Type: Application
    Filed: August 9, 2021
    Publication date: November 25, 2021
    Inventors: Jong Gill, Gene Bornzin
  • Publication number: 20210345900
    Abstract: A computer implemented method and system to detect P-waves in cardiac activity is provided. The system includes memory to store specific executable instructions. One or more processors are configured to execute the specific executable instructions for obtaining far field cardiac activity (CA) signals for a series of beats, applying a P-wave template to at least one sub-segment of the CA signals to obtain an alignment indicator and calculating an amplitude dependence (AD) indicator based at least in part on the P-wave template and the at least one sub-segment. The system analyzes the alignment indicator based on a first criteria, compares the AD indicator with a second criteria, designates a candidate P-wave to be an actual P-wave based on the analyzing and comparing and records results of the designating.
    Type: Application
    Filed: May 11, 2020
    Publication date: November 11, 2021
    Inventors: Gene A. Bornzin, Chunlan Jiang, Jong Gill, Xiaoyi Min, Kyungmoo Ryu, Gabriel A. Mouchawar