Patents by Inventor Jong Gill

Jong Gill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10874322
    Abstract: A computer implemented method and system are provided for detecting premature ventricular contractions (PVCs) in cardiac activity. The method and system obtain cardiac activity (CA) signals for a series of beats, and, for at least a portion of the series of beats, calculate QRS scores for corresponding QRS complex segments from the CA signals. The method and system calculate a variability metric for QRS scores across the series of beats, calculate a QRS complex template using QRS segments from the series of beats, calculate correlation coefficients between the QRS complex template and the QRS complex segments, compare the variability metric to a variability threshold and the correlation coefficients to a correlation threshold, and designate the CA signals to include a predetermined level of PVC burden based on the comparing.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: December 29, 2020
    Assignee: PACESETTER, INC.
    Inventors: Jong Gill, Fujian Qu, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Patent number: 10866381
    Abstract: A lens assembly includes a lens including an optical portion refracting light and a flange portion extended along a periphery of at least a portion of the optical portion, and a lens barrel accommodating the lens. The lens includes a first D-cut portion on one side surface of the flange portion spaced apart from the lens barrel and a second D-cut portion on another side surface of the flange portion spaced apart from the lens barrel, wherein the first D-cut portion and the second D-cut portion each include first inclined surfaces, and the first inclined surfaces are spaced apart from respective ends of the first D-cut portion and the second D-cut portion by a predetermined interval.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: December 15, 2020
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Dong Shin Yang, Jong Gill Lee, Hwan Soo Park, Ju Sung Park, Sot Eum Seo
  • Patent number: 10856761
    Abstract: Methods and systems are provided for detecting arrhythmias in cardiac activity. The methods and systems declare a current beat, from the CA signals, to be a candidate beat or an ineligible beat based on whether the current beat satisfies the rate based selection criteria. The determining and declaring operations are repeated for multiple beats to form an ensemble of candidate beats. The method and system calculate a P-wave segment ensemble from the ensemble of candidate beats, perform a morphology-based comparison between the P-wave segment ensemble and at least one of a monophasic or biphasic template, declare a valid P-wave to be present within the CA signals based on the morphology-based comparison, and utilize the valid P-wave in an arrhythmia detection process to determine at least one of an arrhythmia entry, arrhythmia presence or arrhythmia exit.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: December 8, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Neha Malhotra, Fujian Qu, Jong Gill, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Publication number: 20200376284
    Abstract: A computer implemented method for determining heart arrhythmias based on cardiac activity that includes under control of one or more processors of an implantable medical device (IMD) configured with specific executable instructions to obtain far field cardiac activity (CA) signals at electrodes located remote from the heart, and obtain acceleration signatures, at an accelerometer of the IMD, indicative of heart sounds generated during the cardiac beats. The IMD is also configured with specific executable instructions to declare a candidate arrhythmia based on a characteristic of at least one R-R interval from the cardiac beats, and evaluate the acceleration signatures for ventricular events (VEs) to re-assess a presence or absence of at least one R-wave from the cardiac beats and based thereon confirming or denying the candidate arrhythmia.
    Type: Application
    Filed: May 29, 2019
    Publication date: December 3, 2020
    Inventors: Jong Gill, Gene A. Bornzin
  • Publication number: 20200368536
    Abstract: A computer implemented method and system for labeling types of heart arrhythmias based on cardiac activity are provided. The method is under control of one or more processors of an implantable medical device (IMD) configured with specific executable instruction. The method obtains cardiac activity (CA) signals at electrodes of the IMD during cardiac beats, declares a ventricular tachycardia (VT) episode based on the CA signals and obtains acceleration signatures, at an accelerometer of the IMD, indicative of heart sounds generated during the cardiac beats. The method analyzes an S1 characteristic of interest (COI) from the acceleration signature to identify the VT episode as a stable or non-stable VT episode and labels the VT episode as stable or non-stable based on the analyzing operation.
    Type: Application
    Filed: May 20, 2019
    Publication date: November 26, 2020
    Inventors: Jong GILL, Gene A. BORNZIN
  • Patent number: 10799135
    Abstract: A computer Implemented method and system for detecting arrhythmias in cardiac activity are provided. The method is under control of one or more processors configured with specific executable instructions. The method obtains far field cardiac activity (CA) signals and applies a direction related responsiveness (DRR) filter to the CA signals to produce DRR filtered signals. The method compares a current sample from the CA signals to a prior sample from the DRR filtered signals to identify a direction characteristic of the CA signals and defines the DRR filter based on a timing constant that is set based on the direction characteristic identified. The method analyzes the CA signals in connection with the DRR filtered signals to identify a peak characteristic of the CA signals and determines peak to peak intervals between successive peak characteristic. The method detects at least one of noise or an arrhythmia based on the peak to peak intervals and records results of the detecting.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: October 13, 2020
    Assignee: PACESETTER, INC.
    Inventors: Gene A. Bornzin, Fady Dawoud, Jong Gill, Stuart Rosenberg, Fujian Qu, Neha Malhotra
  • Publication number: 20200245886
    Abstract: A computer implemented method and system for confirming a device documented arrhythmia in cardiac activity are provided. The method is under control of one or more processors configured with executable instructions. The method obtains a cardiac activity (CA) data set that includes CA signals for a series of cardiac events and includes device documented (DD) markers within the series of cardiac events. The device documented markers are indicative of atrial fibrillation (AF) detected by the ICM utilizing an on-board R-R interval irregularity (ORI) process to analyze the CA signals. The method applies a feature enhancement function to the CA signals to form modified CA signals with enhanced sinus features and analyzes the enhanced sinus features in the modified CA signals. The method utilized a confirmatory feature detection process to identify false AF detection by the ORI process. The method records a result of the analysis identifying false AF detection by the ORI process.
    Type: Application
    Filed: April 22, 2020
    Publication date: August 6, 2020
    Inventors: Fujian Qu, Jong Gill, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Patent number: 10729346
    Abstract: A computer implemented method and system for confirming a device documented arrhythmia in cardiac activity are provided. The method is under control of one or more processors configured with executable instructions. The method obtains a cardiac activity (CA) data set that includes CA signals for a series of cardiac events and includes device documented (DD) markers within the series of cardiac events. The device documented markers are indicative of atrial fibrillation (AF) detected by the ICM utilizing an on-board R-R interval irregularity (ORI) process to analyze the CA signals. The method applies a feature enhancement function to the CA signals to form modified CA signals with enhanced sinus features and analyzes the enhanced sinus features in the modified CA signals. The method utilized a confirmatory feature detection process to identify false AF detection by the ORI process. The method records a result of the analysis identifying false AF detection by the ORI process.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: August 4, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Fujian Qu, Jong Gill, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Publication number: 20200237313
    Abstract: The present disclosure provides systems and methods for confirming cardiac events based on heart sounds. An implantable medical device includes a sensing component configured to acquire a signal, and a processing component communicatively coupled to the sensing component, the processing component configured to receive the signal from the sensing component, analyze the received signal to detect the presence or absence of at least one heart sound, and confirm whether an initial detection of a cardiac event is accurate based on the detected presence or absence of the at least one heart sound.
    Type: Application
    Filed: January 30, 2019
    Publication date: July 30, 2020
    Inventors: Jong Gill, Gene A. Bornzin, Stuart Rosenberg, Fujian Qu
  • Publication number: 20200188664
    Abstract: A computer implemented method for detecting pocket stability for an implantable cardiac monitor, including under control of one or more processors in the ICM, collecting impedance data over at least one cardiac cycle. The impedance data is processed to separate an impedance waveform that varies over the at least one cardiac cycle in a manner representative of cardiac functionality over the at least one cardiac cycle. A characteristic of interest is analyzed from the impedance waveform over the at least one cardiac cycle. A pocket stability state of the ICM is identified and recorded based on the analyzing operation.
    Type: Application
    Filed: December 18, 2018
    Publication date: June 18, 2020
    Inventors: Jong Gill, Fujian Qu, Stuart Rosenberg
  • Publication number: 20200146577
    Abstract: Computer implemented methods, devices and systems for monitoring a trend in heart failure (HF) progression are provided. The method comprises sensing left ventricular (LV) activation events at multiple LV sensing sites along a multi-electrode LV lead. The activation events are generated in response to an intrinsic or paced ventricular event. The method implements program instructions on one or more processors for automatically determining a conduction pattern (CP) across the LV sensing sites based on the LV activation events, identifying morphologies (MP) for cardiac signals associated with the LV activation events and repeating the sensing, determining and identifying operations, at select intervals, to build a CP collection and an MP collection. The method calculates an HF trend based on the CP collection and MP collection and classifies a patient condition based on the HF trend to form an HF assessment.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Inventors: Nima Badie, Jan O. Mangual-Soto, Luke C. McSpadden, Louis-Philippe Richer, Jong Gill
  • Patent number: 10582866
    Abstract: Computer implemented methods, devices and systems for monitoring a trend in heart failure (HF) progression are provided. The method comprises sensing left ventricular (LV) activation events at multiple LV sensing sites along a multi-electrode LV lead. The activation events are generated in response to an intrinsic or paced ventricular event. The method implements program instructions on one or more processors for automatically determining a conduction pattern (CP) across the LV sensing sites based on the LV activation events, identifying morphologies (MP) for cardiac signals associated with the LV activation events and repeating the sensing, determining and identifying operations, at select intervals, to build a CP collection and an MP collection. The method calculates an HF trend based on the CP collection and MP collection and classifies a patient condition based on the HF trend to form an HF assessment.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: March 10, 2020
    Assignee: PACESETTER, INC.
    Inventors: Nima Badie, Jan O. Mangual-Soto, Luke C. McSpadden, Louis-Philippe Richer, Jong Gill
  • Publication number: 20200046245
    Abstract: A method and system are provided for detecting arrhythmias in cardiac activity. The method the method and system, under control of one or more processors configured with specific executable instructions, obtain cardiac activity (CA) signals for a series of beats, build a QRS-T template based on an ensemble of QRS complexes within the CA signals, and subtract the QRS-T template from the CA signals to obtain QRS-T scrubbed CA signals. The method and system determine an atrial flutter (AFL) timing feature within the QRS scrubbed CA signals, and declare an AFL episode based on a relation between the AFL timing feature and an AFL cluster criteria.
    Type: Application
    Filed: August 8, 2018
    Publication date: February 13, 2020
    Inventors: Fujian Qu, Gene A. Bornzin, Jong Gill, Stuart Rosenberg, Neha Malhotra
  • Publication number: 20200033548
    Abstract: A lens assembly includes a lens including an optical portion refracting light and a flange portion extended along a periphery of at least a portion of the optical portion, and a lens barrel accommodating the lens. The lens includes a first D-cut portion on one side surface of the flange portion spaced apart from the lens barrel and a second D-cut portion on another side surface of the flange portion spaced apart from the lens barrel, wherein the first D-cut portion and the second D-cut portion each include first inclined surfaces, and the first inclined surfaces are spaced apart from respective ends of the first D-cut portion and the second D-cut portion by a predetermined interval.
    Type: Application
    Filed: October 2, 2019
    Publication date: January 30, 2020
    Applicant: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Dong Shin YANG, Jong Gill LEE, Hwan Soo PARK, Ju Sung PARK, Sot Eum SEO
  • Publication number: 20190380610
    Abstract: A computer Implemented method and system for detecting arrhythmias in cardiac activity are provided. The method is under control of one or more processors configured with specific executable instructions. The method obtains far field cardiac activity (CA) signals and applies a direction related responsiveness (DRR) filter to the CA signals to produce DRR filtered signals. The method compares a current sample from the CA signals to a prior sample from the DRR filtered signals to identify a direction characteristic of the CA signals and defines the DRR filter based on a timing constant that is set based on the direction characteristic identified. The method analyzes the CA signals in connection with the DRR filtered signals to identify a peak characteristic of the CA signals and determines peak to peak intervals between successive peak characteristic. The method detects at least one of noise or an arrhythmia based on the peak to peak intervals and records results of the detecting.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 19, 2019
    Inventors: Gene A. Bornzin, Fady Dawoud, Jong Gill, Stuart Rosenberg, Fujian Qu, Neha Malhotra
  • Patent number: 10473880
    Abstract: A lens assembly includes a lens including an optical portion refracting light and a flange portion extended along a periphery of at least a portion of the optical portion, and a lens barrel accommodating the lens. The lens includes a first D-cut portion on one side surface of the flange portion spaced apart from the lens barrel and a second D-cut portion on another side surface of the flange portion spaced apart from the lens barrel, wherein the first D-cut portion and the second D-cut portion each include first inclined surfaces, and the first inclined surfaces are spaced apart from respective ends of the first D-cut portion and the second D-cut portion by a predetermined interval.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: November 12, 2019
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Dong Shin Yang, Jong Gill Lee, Hwan Soo Park, Ju Sung Park, Sot Eum Seo
  • Publication number: 20190336025
    Abstract: A computer implemented method and system for confirming a device documented arrhythmia in cardiac activity are provided. The method is under control of one or more processors configured with executable instructions. The method obtains a cardiac activity (CA) data set that includes CA signals for a series of cardiac events and includes device documented (DD) markers within the series of cardiac events. The device documented markers are indicative of atrial fibrillation (AF) detected by the ICM utilizing an on-board R-R interval irregularity (ORI) process to analyze the CA signals. The method applies a feature enhancement function to the CA signals to form modified CA signals with enhanced sinus features and analyzes the enhanced sinus features in the modified CA signals. The method utilized a confirmatory feature detection process to identify false AF detection by the ORI process. The method records a result of the analysis identifying false AF detection by the ORI process.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 7, 2019
    Applicant: Pacesetter, Inc.
    Inventors: Fujian Qu, Jong Gill, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Publication number: 20190336032
    Abstract: A computer implemented method and system are provided for detecting premature ventricular contractions (PVCs) in cardiac activity. The method and system obtain cardiac activity (CA) signals for a series of beats, and, for at least a portion of the series of beats, calculate QRS scores for corresponding QRS complex segments from the CA signals. The method and system calculate a variability metric for QRS scores across the series of beats, calculate a QRS complex template using QRS segments from the series of beats, calculate correlation coefficients between the QRS complex template and the QRS complex segments, compare the variability metric to a variability threshold and the correlation coefficients to a correlation threshold, and designate the CA signals to include a predetermined level of PVC burden based on the determining.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 7, 2019
    Inventors: Jong Gill, Fujian Qu, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Publication number: 20190336031
    Abstract: Methods and systems are provided for detecting arrhythmias in cardiac activity. The methods and systems declare a current beat, from the CA signals, to be a candidate beat or an ineligible beat based on whether the current beat satisfies the rate based selection criteria. The determining and declaring operations are repeated for multiple beats to form an ensemble of candidate beats. The method and system calculate a P-wave segment ensemble from the ensemble of candidate beats, perform a morphology-based comparison between the P-wave segment ensemble and at least one of a monophasic or biphasic template, declare a valid P-wave to be present within the CA signals based on the morphology-based comparison, and utilize the valid P-wave in an arrhythmia detection process to determine at least one of an arrhythmia entry, arrhythmia presence or arrhythmia exit.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 7, 2019
    Applicant: Pacesetter, Inc.
    Inventors: Neha Malhotra, Fujian Qu, Jong Gill, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Publication number: 20190336026
    Abstract: Computer implemented methods and systems for detecting arrhythmias in cardiac activity are provided. The method is under control of one or more processors configured with specific executable instructions. The method obtains a far field cardiac activity (CA) data set that includes far field CA signals for beats. The method applies a feature enhancement function to the CA signals to form an enhanced feature in the CA data set. The method calculates an adaptive sensitivity level and sensitivity limit based on the enhanced feature from one or more beats within the CA data set and automatically iteratively analyzes a beat segment of interest by comparing the beat segment of interest to the current sensitivity level to determine whether one or more R-waves are present within the beat segment of interest.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 7, 2019
    Inventors: Fady Dawoud, Fujian Qu, Stuart Rosenberg, Gene A. Bornzin, Jong Gill, Neha Malhotra, Xiaoyi Min