Patents by Inventor Jong Won Lim

Jong Won Lim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8937002
    Abstract: The present disclosure relates to a nitride electronic device and a method for manufacturing the same, and particularly, to a nitride electronic device and a method for manufacturing the same that can implement various types of nitride integrated structures on the same substrate through a regrowth technology (epitaxially lateral over-growth: ELOG) of a semi-insulating gallium nitride (GaN) layer used in a III-nitride semiconductor electronic device including Group III elements such as gallium (Ga), aluminum (Al) and indium (In) and nitrogen.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: January 20, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sung Bum Bae, Eun Soo Nam, Jae Kyoung Mun, Sung Bock Kim, Hae Cheon Kim, Chull Won Ju, Sang Choon Ko, Jong-Won Lim, Ho Kyun Ahn, Woo Jin Chang, Young Rak Park
  • Publication number: 20140363937
    Abstract: Disclosed are a power semiconductor device and a method of fabricating the same which can increase a breakdown voltage of the device through a field plate formed between a gate electrode and a drain electrode and achieve an easier manufacturing process at the same time. The power semiconductor device according to an exemplary embodiment of the present disclosure includes a source electrode and a drain electrode formed on a substrate; a dielectric layer formed between the source electrode and the drain electrode to have a lower height than heights of the two electrodes and including an etched part exposing the substrate; a gate electrode formed on the etched part; a field plate formed on the dielectric layer between the gate electrode and the drain electrode; and a metal configured to connect the field plate and the source electrode.
    Type: Application
    Filed: June 18, 2014
    Publication date: December 11, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Woo Jin CHANG, Jong-Won LIM, Ho Kyun AHN, Sang Choon KO, Sung Bum BAE, Chull Won JU, Young Rak PARK, Jae Kyoung MUN, Eun Soo NAM
  • Patent number: 8901608
    Abstract: A high electron mobility transistor includes a T-type gate electrode disposed on a substrate between source and drain electrodes and insulating layers disposed between the substrate and the T-type gate electrode. The insulating layers include first, second, and third insulating layers. The third insulating layer is disposed between the substrate and a head portion of the T-type gate electrode such that a portion of the third insulating layer is in contact with a foot portion of the T-type gate electrode. The second insulating layer is disposed between the substrate and the head portion of the T-type gate electrode to be in contact with the third insulating layer. The first insulating layer and another portion of the third insulating layer are sequentially stacked between the substrate and the head portion of the T-type gate electrode to be in contact with the second insulating layer.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: December 2, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jong-Won Lim, Hokyun Ahn, Woojin Chang, Dong Min Kang, Seong-Il Kim, Sang-Heung Lee, Hyung Sup Yoon, Chull Won Ju, Hae Cheon Kim, Jae Kyoung Mun, Eun Soo Nam
  • Patent number: 8853821
    Abstract: Provided are vertical capacitors and methods of forming the same. The formation of the vertical capacitor may include forming input and output electrodes on a top surface of a substrate, etching a bottom surface of the substrate to form via electrodes, and then, forming a dielectric layer between the via electrodes. As a result, a vertical capacitor with high capacitance can be provided in a small region of the substrate.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: October 7, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seong-il Kim, Sang-Heung Lee, Jong-Won Lim, Hyung Sup Yoon, Jongmin Lee, Byoung-Gue Min, Jae Kyoung Mun, Eun Soo Nam
  • Patent number: 8841969
    Abstract: Disclosed is an automatic gain control feedback amplifier that can arbitrarily control a gain even when a difference in input signal is large. The automatic gain control feedback amplifier includes: an amplification circuit unit configured to amplify voltage input from an input terminal and output the amplified voltage to an output terminal; a feedback circuit unit connected between the input terminal and the output terminal and including a feedback resistor unit of which a total resistance value is determined by one or more control signals and a feedback transistor connected to the feedback resistor unit in parallel; and a bias circuit unit configured to supply predetermined bias voltage to the feedback transistor.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: September 23, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang-Heung Lee, Seong-Il Kim, Dong Min Kang, Jong-Won Lim, Hyung Sup Yoon, Chull Won Ju, Jae Kyoung Mun, Eun Soo Nam
  • Patent number: 8841154
    Abstract: Disclosed is a method of manufacturing a field effect type compound semiconductor device in which leakage current of a device is decreased and breakdown voltage is enhanced.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: September 23, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyung Sup Yoon, Byoung-Gue Min, Jong-Won Lim, Ho Kyun Ahn, Jong Min Lee, Seong-il Kim, Jae Kyoung Mun, Eun Soo Nam
  • Publication number: 20140213045
    Abstract: The present disclosure relates to a nitride electronic device and a method for manufacturing the same, and particularly, to a nitride electronic device and a method for manufacturing the same that can implement various types of nitride integrated structures on the same substrate through a regrowth technology (epitaxially lateral over-growth: ELOG) of a semi-insulating gallium nitride (GaN) layer used in a III-nitride semiconductor electronic device including Group III elements such as gallium (Ga), aluminum (Al) and indium (In) and nitrogen.
    Type: Application
    Filed: March 31, 2014
    Publication date: July 31, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Sung Bum BAE, Eun Soo NAM, Jae Kyoung MUN, Sung Bock KIM, Hae Cheon KIM, Chull Won JU, Sang Choon KO, Jong-Won LIM, Ho Kyun AHN, Woo Jin CHANG, Young Rak PARK
  • Patent number: 8772833
    Abstract: Disclosed are a power semiconductor device and a method of fabricating the same which can increase a breakdown voltage of the device through a field plate formed between a gate electrode and a drain electrode and achieve an easier manufacturing process at the same time. The power semiconductor device according to an exemplary embodiment of the present disclosure includes a source electrode and a drain electrode formed on a substrate; a dielectric layer formed between the source electrode and the drain electrode to have a lower height than heights of the two electrodes and including an etched part exposing the substrate; a gate electrode formed on the etched part; a field plate formed on the dielectric layer between the gate electrode and the drain electrode; and a metal configured to connect the field plate and the source electrode.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: July 8, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Woo Jin Chang, Jong Won Lim, Ho Kyun Ahn, Sang Choon Ko, Sung Bum Bae, Chull Won Ju, Young Rak Park, Jae Kyoung Mun, Eun Soo Nam
  • Publication number: 20140184333
    Abstract: Provided is a feedback amplifier. The feedback amplifier includes: an amplification circuit unit amplifying a bust packet signal inputted from an input terminal and outputting the amplified voltage to an output terminal; a feedback circuit unit disposed between the input terminal and the output terminal and controlling whether to apply a fixed resistance value to a signal outputted to the output terminal; a packet signal detection unit detecting a peak value of a bust packet signal from the output terminal and controlling whether to apply the fixed resistance value; and a bias circuit unit generating a bias voltage, wherein the feedback circuit unit determines a feedback resistance value to change the fixed resistance value in response to at least one control signal and adjusts a gain by receiving the bias voltage.
    Type: Application
    Filed: July 25, 2013
    Publication date: July 3, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Sang-Heung LEE, Seong-il Kim, Dong Min Kang, Jong-Won Lim, Chull Won Ju, Hyung Sup Yoon, Jae Kyoung Mun, Eun Soo Nam
  • Publication number: 20140167111
    Abstract: A field effect transistor includes an active layer and a capping layer sequentially stacked on a substrate, and a gate electrode penetrating the capping layer and being adjacent to the active layer. The gate electrode includes a foot portion adjacent to the active layer and a head portion having a width greater than a width of the foot portion. The foot portion of an end part of the gate electrode has a width less than a width of the head portion of another part of the gate electrode and greater than a width of the foot portion of the another part of the gate electrode. The foot portion of the end part of the gate electrode further penetrates the active layer so as to be adjacent to the substrate.
    Type: Application
    Filed: June 7, 2013
    Publication date: June 19, 2014
    Inventors: Hokyun AHN, Jong-Won Lim, Jeong-Jin Kim, Hae Cheon Kim, Jae Kyoung Mun, Eun Soo Nam
  • Publication number: 20140167806
    Abstract: Provided is a semiconductor device testing apparatus including a first socket configured to load a package, on which a semiconductor device to be tested may be mounted, and a second socket coupled to the first socket. The first socket may include an upper part including a hole configured to accommodate the package and a terminal pad provided at both side edges of the hole to hold input and output terminals of the package, and a lower part including a heating room, in which a heater and a temperature sensing part may be provided, the heater being configured to heat the semiconductor device and the temperature sensing part being configured to measure temperature of the semiconductor device. The second socket may include a probe card with a pattern that may be configured to receive test signals from an external power source.
    Type: Application
    Filed: September 9, 2013
    Publication date: June 19, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Chul Won JU, Hyung Sup Yoon, Jong-Won Lim, Sang-Heung Lee, Seong-il Kim, Dong Min Kang, Eun Soo Nam, Jae Kyoung Mun
  • Publication number: 20140167175
    Abstract: A field effect transistor is provided. The transistor may include a source electrode and a drain electrode provided spaced apart from each other on a substrate and a ‘+’-shaped gate electrode provided on a portion of the substrate located between the source and drain electrodes.
    Type: Application
    Filed: June 11, 2013
    Publication date: June 19, 2014
    Inventors: Seong-Il KIM, Jong-Won Lim, Dong Min Kang, Sang-Heung Lee, Hyung Sup Yoon, Chull Won Ju, Byoung-Gue Min, Jongmin Lee, Jae Kyoung Mun, Eun Soo Nam
  • Publication number: 20140167070
    Abstract: Provided are an electronic chip and a method of fabricating the same. The semiconductor chip may include a substrate, an active device integrated on the substrate, a lower interlayered insulating layer covering the resulting structure provided with the active device, a passive device provided on the lower interlayered insulating layer, an upper interlayered insulating layer covering the resulting structure provided with the passive device, and a ground electrode provided on the upper interlayered insulating layer. The upper interlayered insulating layer may be formed of a material, whose dielectric constant may be higher than that of the lower interlayered insulating layer.
    Type: Application
    Filed: July 10, 2013
    Publication date: June 19, 2014
    Inventors: Young Rak PARK, Sang Choon Ko, Byoung-Gue Min, Jong-Won Lim, Hokyun Ahn, Sung-Bum Bae, Jae Kyoung Mun, Eun Soo Nam
  • Publication number: 20140159050
    Abstract: A field effect transistor is provided. The field effect transistor may include a capping layer on a substrate, a source ohmic electrode and a drain ohmic electrode on the capping layer, a first insulating layer and a second insulating layer stacked on the capping layer to cover the source and drain ohmic electrodes, a ?-shaped gate electrode including a leg portion and a head portion, the leg portion being connected to the substrate between the source ohmic electrode and the drain ohmic electrode, and the head portion extending from the leg portion to cover a top surface of the second insulating layer, a first planarization layer on the second insulating layer to cover the ?-shaped gate electrode, and a first electrode on the first planarization layer, the first electrode being connected to the source ohmic electrode or the drain ohmic electrode.
    Type: Application
    Filed: July 3, 2013
    Publication date: June 12, 2014
    Inventors: Hyung Sup YOON, Byoung-Gue Min, Jong-Won Lim, Hokyun Ahn, Seong-ll Kim, Sang-Heung Lee, Dong Min Kang, Chull Won Ju, Jae Kyoung Mun
  • Publication number: 20140160689
    Abstract: A package includes a ground plate, a chip mounting plate disposed at a side of the ground plate and having a top surface lower than a top surface of the ground plate, a chip on the chip mounting plate, a first input/output terminal opposite to the chip mounting plate and disposed at another side of the ground plate, and a second input/output terminal opposite to the ground plate and disposed at a side of the chip mounting plate. The first and second input/output terminals are electrically connected to the chip.
    Type: Application
    Filed: August 5, 2013
    Publication date: June 12, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Dong Min KANG, Chull Won Ju, Seong-Il Kim, Sang-Heung Lee, Jong-Won Lim, Hyung Sup Yoon, Jae Kyoung Mun, Eun Soo Nam
  • Publication number: 20140159115
    Abstract: A high electron mobility transistor includes a T-type gate electrode disposed on a substrate between source and drain electrodes and insulating layers disposed between the substrate and the T-type gate electrode. The insulating layers include first, second, and third insulating layers. The third insulating layer is disposed between the substrate and a head portion of the T-type gate electrode such that a portion of the third insulating layer is in contact with a foot portion of the T-type gate electrode. The second insulating layer is disposed between the substrate and the head portion of the T-type gate electrode to be in contact with the third insulating layer. The first insulating layer and another portion of the third insulating layer are sequentially stacked between the substrate and the head portion of the T-type gate electrode to be in contact with the second insulating layer.
    Type: Application
    Filed: June 3, 2013
    Publication date: June 12, 2014
    Inventors: Jong-Won LIM, Hokyun AHN, Woojin Chang, Dong Min Kang, Seong-II Kim, Sang-Heung Lee, Hyung Sup Yoon, Chull Won Ju, Hae Cheon Kim, Jae Kyoung Mun, Eun Soo Nam
  • Patent number: 8723222
    Abstract: The present disclosure relates to a nitride electronic device and a method for manufacturing the same, and particularly, to a nitride electronic device and a method for manufacturing the same that can implement various types of nitride integrated structures on the same substrate through a regrowth technology (epitaxially lateral over-growth: ELOG) of a semi-insulating gallium nitride (GaN) layer used in a III-nitride semiconductor electronic device including Group III elements such as gallium (Ga), aluminum (Al) and indium (In) and nitrogen.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: May 13, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sung Bum Bae, Eun Soo Nam, Jae Kyoung Mun, Sung Bock Kim, Hae Cheon Kim, Chull Won Ju, Sang Choon Ko, Jong-Won Lim, Ho Kyun Ahn, Woo Jin Chang, Young Rak Park
  • Patent number: 8722474
    Abstract: Disclosed are a semiconductor device including a stepped gate electrode and a method of fabricating the semiconductor device. The semiconductor device according to an exemplary embodiment of the present disclosure includes: a semiconductor substrate having a structure including a plurality of epitaxial layers and including an under-cut region formed in a part of a Schottky layer in an upper most part thereof; a cap layer, a first nitride layer and a second nitride layer sequentially formed on the semiconductor substrate to form a stepped gate insulating layer pattern; and a stepped gate electrode formed by depositing a heat-resistant metal through the gate insulating layer pattern, wherein the under-cut region includes an air-cavity formed between the gate electrode and the Schottky layer.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: May 13, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyung Sup Yoon, Byoung-Gue Min, Jong Min Lee, Seong-Il Kim, Dong Min Kang, Ho Kyun Ahn, Jong-Won Lim, Jae Kyoung Mun, Eun Soo Nam
  • Publication number: 20140103539
    Abstract: A semiconductor device may include a substrate having a lower via-hole, an epitaxial layer having an opening exposing a top surface of the substrate, a semiconductor chip disposed on the top surface of the substrate and including first, second, and third electrodes, an upper metal layer connected to the first electrode, a supporting substrate disposed on the upper metal layer and having an upper via-hole, an upper pad disposed on the substrate and extending into the upper via-hole, a lower pad connected to the second electrode in the opening, and a lower metal layer covering a bottom surface of the substrate and connected to the lower pad through the lower via-hole.
    Type: Application
    Filed: September 9, 2013
    Publication date: April 17, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Byoung-Gue MIN, Sang Choon KO, Jong-Won Lim, Hokyun AHN, Hyung Sup YOON, Jae Kyoung MUN, Eun Soo NAM
  • Publication number: 20140035044
    Abstract: Disclosed are a field-effect transistor and a manufacturing method thereof. The disclosed field-effect transistor includes: a semiconductor substrate; a source ohmic metal layer formed on one side of the semiconductor substrate; a drain ohmic metal layer formed on another side of the semiconductor substrate; a gate electrode formed between the source ohmic metal layer and the drain ohmic metal layer, on an upper portion of the semiconductor substrate; an insulating film formed on the semiconductor substrate's upper portion including the source ohmic metal layer, the drain ohmic metal layer and the gate electrode; and a plurality of field electrodes formed on an upper portion of the insulating film, wherein the insulating film below the respective field electrodes has different thicknesses.
    Type: Application
    Filed: October 9, 2013
    Publication date: February 6, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Hokyun AHN, Jong-Won LIM, Hyung Sup YOON, Byoung-Gue MIN, Sang-Heung LEE, Hae Cheon KIM, Eun Soo NAM