Patents by Inventor Jordan D. Greenlee

Jordan D. Greenlee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10748921
    Abstract: Some embodiments include a method of forming stacked memory decks. A first deck has first memory cells arranged in first tiers disposed one atop another, and has a first channel-material pillar extending through the first tiers. An inter-deck structure is over the first deck. The inter-deck structure includes an insulative expanse, and a region extending through the insulative expanse and directly over the first channel-material pillar. The region includes an etch-stop structure. A second deck is formed over the inter-deck structure. The second deck has second memory cells arranged in second tiers disposed one atop another. An opening is formed to extend through the second tiers and to the etch-stop structure. The opening is subsequently extended through the etch-stop structure. A second channel-material pillar is formed within the opening and is coupled to the first channel-material pillar. Some embodiments include integrated assemblies.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: August 18, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Liu Liu, David Daycock, Rithu K. Bhonsle, Giovanni Mazzone, Narula Bilik, Jordan D. Greenlee, Minsoo Lee, Benben Li
  • Patent number: 10727250
    Abstract: A method used in forming an array of elevationally-extending transistors comprises forming vertically-alternating tiers of insulating material and void space. Such method includes forming (a) individual longitudinally-aligned channel openings extending elevationally through the insulating-material tiers, and (b) horizontally-elongated trenches extending elevationally through the insulating-material tiers. The void-space tiers are filled with conductive material by flowing the conductive material or one or more precursors thereof through at least one of (a) and (b) to into the void-space tiers. After the filling, transistor channel material is formed in the individual channel openings along the insulating-material tiers and along the conductive material in the filled void-space tiers.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: July 28, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John Mark Meldrim, E. Allen McTeer
  • Publication number: 20200211843
    Abstract: Described are methods for forming a multilayer conductive structure for semiconductor devices. A seed layer is formed comprising a metal and an additional constituent that in combination with the metal inhibits nucleation of a fill layer of the metal formed over the seed layer. Tungsten may be doped or alloyed with silicon to form the seed layer, with a tungsten fill being formed over the seed layer.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 2, 2020
    Inventors: David Ross Economy, Brian Beatty, John Mark Meldrim, Yongjun Jeff Hu, Jordan D. Greenlee
  • Publication number: 20200161332
    Abstract: Some embodiments include a method of forming an integrated structure. An assembly is formed to include a stack of alternating first and second levels. The first levels have insulative material, and the second levels have voids which extend horizontally. The assembly includes channel material structures extending through the stack. A first metal-containing material is deposited within the voids to partially fill the voids. The deposited first metal-containing material is etched to remove some of the first metal-containing material from within the partially-filled voids. Second metal-containing material is then deposited to fill the voids.
    Type: Application
    Filed: January 23, 2020
    Publication date: May 21, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Chet E. Carter, Collin Howder, John Mark Meldrim, Everett A. McTeer
  • Publication number: 20200152651
    Abstract: Some embodiments include a method in which an assembly is formed to have voids within a stack, and to have slits adjacent the voids. Peripheral boundaries of the voids have proximal regions near the slits and distal regions adjacent the proximal regions. A material is deposited within the voids under conditions which cause the material to form to a greater thickness along the distal regions than along the proximal regions. Some embodiments include an assembly having a stack of alternating first and second levels. The second levels include conductive material. Panel structures extend through the stack. The conductive material within the second levels has outer edges with proximal regions near the panel structures and distal regions adjacent the proximal regions. Interface material is along the outer edges of the conductive material and has a different composition along the proximal regions than along the distal regions.
    Type: Application
    Filed: January 7, 2020
    Publication date: May 14, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John Mark Meldrim, Everett A. McTeer
  • Publication number: 20200135751
    Abstract: Some embodiments include a method of forming stacked memory decks. A first deck has first memory cells arranged in first tiers disposed one atop another, and has a first channel-material pillar extending through the first tiers. An inter-deck structure is over the first deck. The inter-deck structure includes an insulative expanse, and a region extending through the insulative expanse and directly over the first channel-material pillar. The region includes an etch-stop structure. A second deck is formed over the inter-deck structure. The second deck has second memory cells arranged in second tiers disposed one atop another. An opening is formed to extend through the second tiers and to the etch-stop structure. The opening is subsequently extended through the etch-stop structure. A second channel-material pillar is formed within the opening and is coupled to the first channel-material pillar. Some embodiments include integrated assemblies.
    Type: Application
    Filed: October 25, 2018
    Publication date: April 30, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Liu Liu, David Daycock, Rithu K. Bhonsle, Giovanni Mazzone, Narula Bilik, Jordan D. Greenlee, Minsoo Lee, Benben Li
  • Publication number: 20200075620
    Abstract: Some embodiments include a conductive structure of an integrated circuit. The conductive structure includes an upper primary portion, with the upper primary portion having a first conductive constituent configured as a container. The container has a bottom, and a pair of sidewalls extending upwardly from the bottom. An interior region of the container is over the bottom and between the sidewalls. The upper primary portion includes a second conductive constituent configured as a mass filling the interior region of the container. The second conductive constituent is a different composition than the first conductive constituent. One or more conductive projections join to the upper primary portion and extend downwardly from the upper primary portion. Some embodiments include assemblies comprising memory cells over conductive structures. Some embodiments include methods of forming conductive structures.
    Type: Application
    Filed: August 16, 2019
    Publication date: March 5, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Nancy M. Lomeli, Tom George, Jordan D. Greenlee, Scott M. Pook, John Mark Meldrim
  • Patent number: 10573661
    Abstract: Some embodiments include a method of forming an integrated structure. An assembly is formed to include a stack of alternating first and second levels. The first levels have insulative material, and the second levels have voids which extend horizontally. The assembly includes channel material structures extending through the stack. A first metal-containing material is deposited within the voids to partially fill the voids. The deposited first metal-containing material is etched to remove some of the first metal-containing material from within the partially-filled voids. Second metal-containing material is then deposited to fill the voids.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: February 25, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Chet E. Carter, Collin Howder, John Mark Meldrim, Everett A. McTeer
  • Patent number: 10559579
    Abstract: Some embodiments include a method in which an assembly is formed to have voids within a stack, and to have slits adjacent the voids. Peripheral boundaries of the voids have proximal regions near the slits and distal regions adjacent the proximal regions. A material is deposited within the voids under conditions which cause the material to form to a greater thickness along the distal regions than along the proximal regions. Some embodiments include an assembly having a stack of alternating first and second levels. The second levels include conductive material. Panel structures extend through the stack. The conductive material within the second levels has outer edges with proximal regions near the panel structures and distal regions adjacent the proximal regions. Interface material is along the outer edges of the conductive material and has a different composition along the proximal regions than along the distal regions.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: February 11, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John Mark Meldrim, Everett A. McTeer
  • Publication number: 20190333933
    Abstract: A method used in forming an array of elevationally-extending transistors comprises forming vertically-alternating tiers of insulating material and void space. Such method includes forming (a) individual longitudinally-aligned channel openings extending elevationally through the insulating-material tiers, and (h) horizontally-elongated trenches extending elevationally through the insulating-material tiers. The void-space tiers are filled with conductive material by flowing the conductive material or one or more precursors thereof through at least one of (a) and (b) to into the void-space tiers. After the filling, transistor channel material is formed in the individual channel openings along the insulating-material tiers and along the conductive material in the filled void-space tiers.
    Type: Application
    Filed: June 4, 2019
    Publication date: October 31, 2019
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John Mark Meldrim, E. Allen McTeer
  • Publication number: 20190333924
    Abstract: Some embodiments include a method in which an assembly is formed to have voids within a stack, and to have slits adjacent the voids. Peripheral boundaries of the voids have proximal regions near the slits and distal regions adjacent the proximal regions. A material is deposited within the voids under conditions which cause the material to form to a greater thickness along the distal regions than along the proximal regions. Some embodiments include an assembly having a stack of alternating first and second levels. The second levels include conductive material. Panel structures extend through the stack. The conductive material within the second levels has outer edges with proximal regions near the panel structures and distal regions adjacent the proximal regions. Interface material is along the outer edges of the conductive material and has a different composition along the proximal regions than along the distal regions.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 31, 2019
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John Mark Meldrim, Everett A. McTeer
  • Patent number: 10424596
    Abstract: Some embodiments include a conductive structure of an integrated circuit. The conductive structure includes an upper primary portion, with the upper primary portion having a first conductive constituent configured as a container. The container has a bottom, and a pair of sidewalls extending upwardly from the bottom. An interior region of the container is over the bottom and between the sidewalls. The upper primary portion includes a second conductive constituent configured as a mass filling the interior region of the container. The second conductive constituent is a different composition than the first conductive constituent. One or more conductive projections join to the upper primary portion and extend downwardly from the upper primary portion. Some embodiments include assemblies comprising memory cells over conductive structures. Some embodiments include methods of forming conductive structures.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: September 24, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Nancy M. Lomeli, Tom George, Jordan D. Greenlee, Scott M. Pook, John Mark Meldrim
  • Patent number: 10361216
    Abstract: A method used in forming an array of elevationally-extending transistors comprises forming vertically-alternating tiers of insulating material and void space. Such method includes forming (a) individual longitudinally-aligned channel openings extending elevationally through the insulating-material tiers, and (b) horizontally-elongated trenches extending elevationally through the insulating-material tiers. The void-space tiers are filled with conductive material by flowing the conductive material or one or more precursors thereof through at least one of (a) and (b) to into the void-space tiers. After the filling, transistor channel material is formed in the individual channel openings along the insulating-material tiers and along the conductive material in the filled void-space tiers.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: July 23, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John Mark Meldrim, E. Allen McTeer
  • Patent number: 10361214
    Abstract: Some embodiments include a method in which an assembly is formed to have voids within a stack, and to have slits adjacent the voids. Peripheral boundaries of the voids have proximal regions near the slits and distal regions adjacent the proximal regions. A material is deposited within the voids under conditions which cause the material to form to a greater thickness along the distal regions than along the proximal regions. Some embodiments include an assembly having a stack of alternating first and second levels. The second levels include conductive material. Panel structures extend through the stack. The conductive material within the second levels has outer edges with proximal regions near the panel structures and distal regions adjacent the proximal regions. Interface material is along the outer edges of the conductive material and has a different composition along the proximal regions than along the distal regions.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: July 23, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John Mark Meldrim, Everett A. McTeer
  • Publication number: 20190221580
    Abstract: Some embodiments include a method of forming an integrated structure. An assembly is formed to include a stack of alternating first and second levels. The first levels have insulative material, and the second levels have voids which extend horizontally. The assembly includes channel material structures extending through the stack. A first metal-containing material is deposited within the voids to partially fill the voids. The deposited first metal-containing material is etched to remove some of the first metal-containing material from within the partially-filled voids. Second metal-containing material is then deposited to fill the voids.
    Type: Application
    Filed: March 25, 2019
    Publication date: July 18, 2019
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Chet E. Carter, Collin Howder, John Mark Meldrim, Everett A. McTeer
  • Publication number: 20190198518
    Abstract: Some embodiments include a conductive structure of an integrated circuit. The conductive structure includes an upper primary portion, with the upper primary portion having a first conductive constituent configured as a container. The container has a bottom, and a pair of sidewalls extending upwardly from the bottom. An interior region of the container is over the bottom and between the sidewalls. The upper primary portion includes a second conductive constituent configured as a mass filling the interior region of the container. The second conductive constituent is a different composition than the first conductive constituent. One or more conductive projections join to the upper primary portion and extend downwardly from the upper primary portion. Some embodiments include assemblies comprising memory cells over conductive structures. Some embodiments include methods of forming conductive structures.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 27, 2019
    Inventors: Nancy M. Lomeli, Tom George, Jordan D. Greenlee, Scott M. Pook, John Mark Meldrim
  • Publication number: 20190189630
    Abstract: Some embodiments include a method in which an assembly is formed to have voids within a stack, and to have slits adjacent the voids. Peripheral boundaries of the voids have proximal regions near the slits and distal regions adjacent the proximal regions. A material is deposited within the voids under conditions which cause the material to form to a greater thickness along the distal regions than along the proximal regions. Some embodiments include an assembly having a stack of alternating first and second levels. The second levels include conductive material. Panel structures extend through the stack. The conductive material within the second levels has outer edges with proximal regions near the panel structures and distal regions adjacent the proximal regions. Interface material is along the outer edges of the conductive material and has a different composition along the proximal regions than along the distal regions.
    Type: Application
    Filed: November 9, 2018
    Publication date: June 20, 2019
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John Mark Meldrim, Everett A. McTeer
  • Patent number: 10283524
    Abstract: Some embodiments include a method of forming an integrated structure. An assembly is formed to include a stack of alternating first and second levels. The first levels have insulative material, and the second levels have voids which extend horizontally. The assembly includes channel material structures extending through the stack. A first metal-containing material is deposited within the voids to partially fill the voids. The deposited first metal-containing material is etched to remove some of the first metal-containing material from within the partially-filled voids. Second metal-containing material is then deposited to fill the voids.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: May 7, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Chet E. Carter, Collin Howder, John Mark Meldrim, Everett A. McTeer
  • Publication number: 20190088671
    Abstract: A method used in forming an array of elevationally-extending transistors comprises forming vertically-alternating tiers of insulating material and void space. Such method includes forming (a) individual longitudinally-aligned channel openings extending elevationally through the insulating-material tiers, and (h) horizontally-elongated trenches extending elevationally through the insulating-material tiers. The void-space tiers are filled with conductive material by flowing the conductive material or one or more precursors thereof through at least one of (a) and (b) to into the void-space tiers. After the filling, transistor channel material is formed in the individual channel openings along the insulating-material tiers and along the conductive material in the filled void-space tiers.
    Type: Application
    Filed: September 20, 2017
    Publication date: March 21, 2019
    Inventors: Jordan D. Greenlee, John Mark Meldrim, E. Allen McTeer
  • Patent number: 10170493
    Abstract: Some embodiments include a method in which an assembly is formed to have voids within a stack, and to have slits adjacent the voids. Peripheral boundaries of the voids have proximal regions near the slits and distal regions adjacent the proximal regions. A material is deposited within the voids under conditions which cause the material to form to a greater thickness along the distal regions than along the proximal regions. Some embodiments include an assembly having a stack of alternating first and second levels. The second levels include conductive material. Panel structures extend through the stack. The conductive material within the second levels has outer edges with proximal regions near the panel structures and distal regions adjacent the proximal regions. Interface material is along the outer edges of the conductive material and has a different composition along the proximal regions than along the distal regions.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: January 1, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John Mark Meldrim, Everett A. McTeer