Patents by Inventor Jordan D. Greenlee

Jordan D. Greenlee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11315877
    Abstract: A microelectronic device includes a stack structure, a staircase structure, conductive pad structures, and conductive contact structures. The stack structure includes vertically alternating conductive structures and insulating structures arranged in tiers. Each of the tiers individually includes one of the conductive structures and one of the insulating structures. The staircase structure has steps made up of edges of at least some of the tiers of the stack structure. The conductive pad structures are on the steps of the staircase structure and include beta phase tungsten. The conductive contact structures are on the conductive pad structures. Memory devices, electronic systems, and methods of forming microelectronic devices are also described.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: April 26, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John D. Hopkins, Rita J. Klein, Everett A. McTeer, Lifang Xu, Daniel Billingsley, Collin Howder
  • Patent number: 11302707
    Abstract: Some embodiments include a memory device having a vertical stack of alternating insulative levels and conductive levels. The conductive levels include first regions, and include second regions laterally adjacent to the first regions. The first regions have a first vertical thickness and at least two different metal-containing materials along the first vertical thickness. The second regions have a second vertical thickness at least as large as the first vertical thickness, and have only a single metal-containing material along the second vertical thickness. Dielectric-barrier material is laterally adjacent to the first regions. Charge-blocking material is laterally adjacent to the dielectric-barrier material. Charge-storage material is laterally adjacent to the charge-blocking material. Dielectric material is laterally adjacent to the charge storage material. Channel material is laterally adjacent to the dielectric material.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: April 12, 2022
    Assignee: Micron Technology, Inc.
    Inventors: John D. Hopkins, Jordan D. Greenlee
  • Publication number: 20220077168
    Abstract: A method of forming a microelectronic device comprises forming a sacrificial material over a base structure. Portions of the sacrificial material are replaced with an etch-resistant material. A stack structure is formed over the etch-resistant material and remaining portions of the sacrificial material. The stack structure comprises a vertically alternating sequence of insulative material and additional sacrificial material arranged in tiers, and at least one staircase structure horizontally overlapping the etch-resistant material and having steps comprising horizontal ends of the tiers. Slots are formed to vertically extend through the stack structure and the remaining portions of the sacrificial material. The sacrificial material and the additional sacrificial material are selectively replaced with conductive material after forming the slots to respectively form lateral contact structures and conductive structures. Microelectronic devices, memory devices, and electronic systems are also described.
    Type: Application
    Filed: September 4, 2020
    Publication date: March 10, 2022
    Inventors: John D. Hopkins, Jordan D. Greenlee, Nancy M. Lomeli
  • Publication number: 20220068945
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming an upper stack directly above a lower stack. The lower stack comprises vertically-alternating lower-first-tiers and lower-second-tiers. The upper stack comprises vertically-alternating upper-first-tiers and upper-second-tiers. Lower channel openings extend through the lower-first-tiers and the lower-second-tiers. The lower channel openings have sacrificial material therein. An upper of the lower-second-tiers or a lower of the upper-second-tiers comprises non-stoichiometric silicon dioxide that has a silicon-to-oxygen atomic ratio greater than 0.5. A higher of the upper-second-tiers that is above said lower upper-second-tier comprises silicon dioxide that has a silicon-to-oxygen atomic ratio less than or equal to 0.5. Upper channel openings are etched through the upper-first-tiers and the upper-second-tiers to stop on said upper lower-second-tier or said lower upper-second-tier.
    Type: Application
    Filed: October 12, 2020
    Publication date: March 3, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Daniel Billingsley, Jordan D. Greenlee, John D. Hopkins, Yongjun Jeff Hu, Swapnil Lengade
  • Publication number: 20220068959
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming an upper stack directly above a lower stack. The lower stack comprises vertically-alternating lower-first-tiers and lower-second-tiers. The upper stack comprises vertically-alternating upper-first-tiers and upper-second-tiers. Lower channel openings extend through the lower-first-tiers and the lowers-second-tiers. The lower channel openings have sacrificial material therein. An upper of the lower-first-tiers or a lower of the upper-first-tiers comprises non-stoichiometric silicon nitride comprising (a) or (b), where (a): a nitrogen-to-silicon atomic ratio greater than 1.33 and less than 1.5; and (b): a nitrogen-to-silicon atomic ratio greater than or equal to 1.0 and less than 1.33. A higher of the upper-first-tiers that is above said lower upper-first-tier comprises silicon nitride not having either the (a) or the (b).
    Type: Application
    Filed: October 12, 2020
    Publication date: March 3, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Daniel Billingsley, Jordan D. Greenlee, John D. Hopkins, Yongjun Jeff Hu, Swapnil Lengade
  • Publication number: 20220059569
    Abstract: A memory array comprising strings of memory cells comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Operative channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. Upper masses comprise first material laterally-between and longitudinally-spaced-along immediately-laterally-adjacent of the memory blocks and second material laterally-between and longitudinally-spaced-along the immediately-laterally-adjacent memory blocks longitudinally-between and under the upper masses. The second material is of different composition from that of the first material. The second material comprises insulative material. Other embodiments, including method, are disclosed.
    Type: Application
    Filed: November 2, 2021
    Publication date: February 24, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Daniel Billingsley, Indra V. Chary, Rita J. Klein
  • Publication number: 20220051980
    Abstract: A microelectronic device comprises a stack structure comprising alternating conductive structures and insulative structures arranged in tiers, each of the tiers individually comprising a conductive structure and an insulative structure, strings of memory cells vertically extending through the stack structure, the strings of memory cells comprising a channel material vertically extending through the stack structure, and conductive rails laterally adjacent to the conductive structures of the stack structure. The conductive rails comprise a material composition that is different than a material composition of the conductive structures of the stack structure. Related memory devices, electronic systems, and methods are also described.
    Type: Application
    Filed: August 11, 2020
    Publication date: February 17, 2022
    Inventors: John D. Hopkins, Jordan D. Greenlee, Francois H. Fabreguette, John A. Smythe
  • Publication number: 20220051991
    Abstract: A microelectronic device comprises pillar structures extending vertically through an isolation material, conductive lines electrically coupled to the pillar structures, contact structures between the pillar structures and the conductive lines, and interconnect structures between the conductive lines and the contact structures. The conductive lines comprise one or more of titanium, ruthenium, aluminum, and molybdenum. The interconnect structures comprise a material composition that is different than one or more of a material composition of the contact structures and a material composition of the conductive lines. Related memory devices, electronic systems, and methods are also described.
    Type: Application
    Filed: August 11, 2020
    Publication date: February 17, 2022
    Inventors: John D. Hopkins, Jordan D. Greenlee, Marko Milojevic
  • Publication number: 20220045075
    Abstract: Some embodiments include an integrated assembly having a source structure, and having a stack of alternating conductive levels and insulative levels over the source structure. Cell-material-pillars pass through the stack. The cell-material-pillars are arranged within a configuration which includes a first memory-block-region and a second memory-block-region. The cell-material-pillars include channel material which is electrically coupled with the source structure. Memory cells are along the conductive levels and include regions of the cell-material-pillars. A panel is between the first and second memory-block-regions. The panel has a first material configured as a container shape. The container shape defines opposing sides and a bottom of a cavity. The panel has a second material within the cavity. The second material is compositionally different from the first material. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: August 7, 2020
    Publication date: February 10, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Nancy M. Lomeli, John D. Hopkins, Jiewei Chen, Indra V. Chary, Jun Fang, Vladimir Samara, Kaiming Luo, Rita J. Klein, Xiao Li, Vinayak Shamanna
  • Publication number: 20220044965
    Abstract: A method used in forming a conductive via of integrated circuitry comprises forming a lining laterally over sidewalk of an elevationally-elongated opening. The lining comprises elemental-form silicon. The elemental-form silicon of an uppermost portion of the lining is ion implanted in the elevationally-elongated opening. The ion-implanted elemental-form silicon of the uppermost portion of the lining is etched selectively relative to the elemental-form silicon of a lower portion of the lining below the uppermost portion that was not subjected to said ion implanting. The elemental-form silicon of the lower portion of the lining is reacted with a metal halide to form elemental-form metal in a lower portion of the elevationally-elongated opening that is the metal from the metal halide. Conductive material in the elevationally-elongated opening is formed atop and directly against the elemental-form metal. Other embodiments, including structure independent of method, are disclosed.
    Type: Application
    Filed: August 7, 2020
    Publication date: February 10, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Yiping Wang, Jordan D. Greenlee, Collin Howder
  • Publication number: 20220044999
    Abstract: Some embodiments include conductive interconnects which include the first and second conductive materials, and which extend upwardly from a conductive structure. Some embodiments include integrated assemblies having conductive interconnects.
    Type: Application
    Filed: August 7, 2020
    Publication date: February 10, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Rita J. Klein, Everett A. McTeer, John D. Hopkins, Shuangqiang Luo, Song Kai Tan, Jing Wai Fong, Anurag Jindal, Chieh Hsien Quek
  • Patent number: 11244903
    Abstract: Described are methods for forming a tungsten conductive structure over a substrate, such as a semiconductor substrate. Described examples include forming a silicon-containing material, such as a doped silicon-containing material, over a supporting structure. The silicon-containing material is then subsequently converted to a tungsten seed material containing the dopant material. A tungsten fill material of lower resistance will then be formed over the tungsten seed material.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: February 8, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Christian George Emor, Travis Rampton, Everett Allen McTeer, Rita J. Klein
  • Publication number: 20220037350
    Abstract: A microelectronic device comprises a stack structure comprising alternating conductive structures and insulative structures arranged in tiers, each of the tiers individually comprising a conductive structure and an insulative structure, strings of memory cells vertically extending through the stack structure, the strings of memory cells comprising a channel material vertically extending through the stack structure, and another stack structure vertically overlying the stack structure and comprising other tiers of alternating levels of other conductive structures and other insulative structures, the other conductive structures exhibiting a conductivity greater than a conductivity of the conductive structures of the stack structure. Related memory devices, electronic systems, and methods are also described.
    Type: Application
    Filed: July 30, 2020
    Publication date: February 3, 2022
    Inventors: Daniel Billingsley, Matthew J. King, Jordan D. Greenlee, Yongjun J. Hu, Tom George, Amritesh Rai, Sidhartha Gupta, Kyle A. Ritter
  • Publication number: 20220037358
    Abstract: Some embodiments include a conductive structure of an integrated circuit. The conductive structure includes an upper primary portion, with the upper primary portion having a first conductive constituent configured as a container. The container has a bottom, and a pair of sidewalls extending upwardly from the bottom. An interior region of the container is over the bottom and between the sidewalls. The upper primary portion includes a second conductive constituent configured as a mass filling the interior region of the container. The second conductive constituent is a different composition than the first conductive constituent. One or more conductive projections join to the upper primary portion and extend downwardly from the upper primary portion. Some embodiments include assemblies comprising memory cells over conductive structures. Some embodiments include methods of forming conductive structures.
    Type: Application
    Filed: October 15, 2021
    Publication date: February 3, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Nancy M. Lomeli, Tom George, Jordan D. Greenlee, Scott M. Pook, John Mark Meldrim
  • Publication number: 20220028996
    Abstract: Some embodiments include a memory array having a vertical stack of alternating insulative levels and wordline levels. Channel material extends vertically along the stack. The wordline levels include conductive regions which have a first metal-containing material and a second metal-containing material. The first metal-containing material at least partially surrounds the second metal-containing material. The first metal-containing material has a different crystallinity than the second metal-containing material. In some embodiments the first metal-containing material is substantially amorphous, and the second metal-containing material has a mean grain size within a range of from greater than or equal to about 5 nm to less than or equal to about 200 nm. Charge-storage regions are adjacent the wordline levels. Charge-blocking regions are between the charge-storage regions and the conductive regions.
    Type: Application
    Filed: October 7, 2021
    Publication date: January 27, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Rita J. Klein, Everett A. McTeer, John Mark Meldrim
  • Publication number: 20220020763
    Abstract: A memory array comprising strings of memory cells comprises an upper stack above a lower stack. The lower stack comprises vertically-alternating lower conductive tiers and lower insulative tiers. The upper stack comprises vertically-alternating upper conductive tiers and upper insulative tiers. An intervening tier is vertically between the upper and lower stacks. The intervening tier is at least predominantly polysilicon and of different composition from compositions of the upper conductive tier and the upper insulative tier immediately-above the intervening tier and of different composition from compositions of the lower conductive tier and the lower insulative tier immediately-below the intervening tier. Channel-material strings of memory cells extend through the upper stack, the intervening tier, and the lower stack. Other structures and methods are disclosed.
    Type: Application
    Filed: July 14, 2020
    Publication date: January 20, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Daniel Billingsley, Jordan D. Greenlee, John D. Hopkins, Yongjun Jeff Hu
  • Publication number: 20220005823
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers. The stack comprises laterally-spaced memory-block regions. Channel-material strings extend through the first tiers and the second tiers. Material of the first tiers is of different composition from material of the second tiers. Conducting material is formed in one of the first tiers. The conducting material comprises a seam in and longitudinally-along opposing sides of individual of the memory-block regions in the one first tier. The seam is penetrated with a fluid that forms intermediate material in the seam longitudinally-along the opposing sides of the individual memory-block regions in the one first tier and comprises a different composition from that of the conducting material. Other embodiments, including structure independent of method, are disclosed.
    Type: Application
    Filed: July 1, 2020
    Publication date: January 6, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John D. Hopkins
  • Publication number: 20210384422
    Abstract: Some embodiments include an integrated assembly having an insulative mass over a conductive base structure. A conductive interconnect extends through the insulative mass to an upper surface of the conductive base structure. The conductive interconnect includes a conductive liner extending around an outer lateral periphery of the interconnect. The conductive liner includes nitrogen in combination with a first metal. A container-shaped conductive structure is laterally surrounded by the conductive liner. The container-shaped conductive structure includes a second metal. A conductive plug is within the container-shaped conductive structure. Some embodiments include methods of forming conductive interconnects within integrated assemblies.
    Type: Application
    Filed: August 24, 2021
    Publication date: December 9, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Tao D. Nguyen, John Mark Meldrim, Aaron K. Belsher
  • Publication number: 20210384216
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a conductor tier comprising conductor material on a substrate. Laterally-spaced memory-block regions are formed and individually comprise a vertical stack comprising alternating first tiers and second tiers directly above the conductor tier. Channel-material strings of memory cells extend through the first tiers and the second tiers. Horizontally-elongated lines are formed in the conductor material between the laterally-spaced memory-block regions. The horizontally-elongated lines are of different composition from an upper portion of the conductor material that is laterally-between the horizontally-elongated lines. After the horizontally-elongated lines are formed, conductive material of a lowest of the first tiers is formed that directly electrically couples together the channel material of individual of the channel-material strings and the conductor material of the conductor tier.
    Type: Application
    Filed: June 3, 2020
    Publication date: December 9, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, John D. Hopkins
  • Patent number: 11195848
    Abstract: A memory array comprising strings of memory cells comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Operative channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. Upper masses comprise first material laterally-between and longitudinally-spaced-along immediately-laterally-adjacent of the memory blocks and second material laterally-between and longitudinally-spaced-along the immediately-laterally-adjacent memory blocks longitudinally-between and under the upper masses. The second material is of different composition from that of the first material. The second material comprises insulative material. Other embodiments, including method, are disclosed.
    Type: Grant
    Filed: August 25, 2019
    Date of Patent: December 7, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Daniel Billingsley, Indra V. Chary, Rita J. Klein