Patents by Inventor Joseph A. Izatt

Joseph A. Izatt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9622658
    Abstract: OCT imaging systems are provided for imaging a spherical-type eye including a source having an associated source arm path and a reference arm having an associated reference arm path coupled to the source path. The reference arm path has an associated reference arm path length. A sample is also provided having an associated sample arm path coupled to the source arm and reference arm paths. A lens having a focal power optimized for a diameter of the spherical-type eye is provided along with a reference arm path length adjustment module coupled to the reference arm. The reference arm path length adjustment module is configured to automatically adjust the reference arm path length such that the reference arm path length is based on an eye diameter of the subject.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: April 18, 2017
    Assignee: Bioptigen, Inc.
    Inventors: Robert H. Hart, Eric L. Buckland, Glenn A. Myers, Joseph A. Izatt, Joseph Elliott Vance
  • Publication number: 20170102223
    Abstract: Frequency domain optical coherence imaging systems have an optical source, an optical detector and an optical transmission path between the optical source and the optical detector. The optical transmission path between the optical source and the optical detector reduces an effective linewidth of the imaging system. The optical source may be a broadband source and the optical transmission path may include a periodic optical filter.
    Type: Application
    Filed: December 21, 2016
    Publication date: April 13, 2017
    Inventors: Joseph A. Izatt, Eric L. Buckland, William J. Brown
  • Patent number: 9562856
    Abstract: Frequency domain optical coherence imaging systems have an optical source, an optical detector and an optical transmission path between the optical source and the optical detector. The optical transmission path between the optical source and the optical detector reduces an effective linewidth of the imaging system. The optical source may be a broadband source and the optical transmission path may include a periodic optical filter.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: February 7, 2017
    Assignee: Bioptigen, Inc.
    Inventors: Joseph A. Izatt, Eric L. Buckland, William J. Brown
  • Patent number: 9517006
    Abstract: A system for obtaining low-angle circumferential optical access to an eye of a subject. The system includes a light source to generate a beam of light; a beam steering mechanism to steer the beam of light a focusing lens to focus the beam of light; and a contact lens to direct the beam of light into the eye of the subject, the contact lens including a tapered reflective surface to direct the beam of light into the eye of the subject.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: December 13, 2016
    Assignee: Duke University
    Inventors: Joseph A. Izatt, Anthony N. Kuo, Ryan P. McNabb
  • Publication number: 20160338589
    Abstract: Systems and methods for eye tracking for motion corrected ophthalmic optical coherence tomography (OCT) are disclosed. According to an aspect, an imaging system includes an eye tracking device configured to determine movement of an eye. The imaging system also includes an OCT apparatus configured to generate OCT images of a retina of the eye. The OCT apparatus includes a scanner operable to be moved for relocating an OCT scan pivot at a pupil plane for image capture and during capture of the OCT images. The imaging system also includes a controller configured to control the scanner to relocate the OCT scan pivot at the pupil plane based on the determined movement of the eye.
    Type: Application
    Filed: January 30, 2015
    Publication date: November 24, 2016
    Inventors: Oscar M. Carrasco-Zevallos, Joseph A. Izatt, Christian B. Viehland, Ryan McNabb
  • Patent number: 9448056
    Abstract: Optical coherence tomography (OCT) is an imaging method which can image with micrometer-scale resolution up to a few millimeters deep into, for example, living biological tissues and preserved tissue samples. An improved apparatus and image reconstruction algorithm for parallel Fourier Domain OCT which greatly eases requirements for interferometer stability and also allows for more efficient parallel image acquisition is provided. The apparatuses and algorithms reconstruct images from interfered, low-coherence, multiwave length signals having a .pi. radian phase difference relative to one another. Other numbers of signals and other phase differences may be alternatively used, with some combinations resulting in higher resolution and image stability. The apparatus also eliminates a need for bulk optics to modulate a phase delay in a reference arm of the optical path. Images may be reconstructed using two spectrometers, where each is coupled to a detector array such as a photodiode array.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: September 20, 2016
    Assignee: Duke University
    Inventor: Joseph A. Izatt
  • Publication number: 20160235292
    Abstract: The present invention is directed to a method and system for improved aiming during Optical Coherence Tomography (OCT) on young children and those unable to cooperate with OCT imaging by synchronization with retinal birefringence scanning (RBS). OCT is performed without knowing whether or not the subject is looking at the intended target. The present invention combines OCT retinal imaging, such as, but not limited to, time domain OCT, SDOCT, or SSOCT, with RBS technology that provides accurate information on the presence or absence of foveal fixation. Therefore, the present invention only analyzes data during foveal fixation. A system combining OCT with RBS is implemented such that both systems co-operate in a specified alignment, such that when the RBS fixation detection system detects alignment with the fovea of the eye, the OCT system will be aimed at the retinal region of interest, usually but not necessarily including the macular area.
    Type: Application
    Filed: October 2, 2014
    Publication date: August 18, 2016
    Inventors: Boris Gramatikov, David Lee Guyton, Kristina Irsch, Cynthia Toth, Oscar Carrasco-Zevallos, Joseph Izatt
  • Patent number: 9384582
    Abstract: Methods and computer program products for quantitative three-dimensional (“3D”) image correction in optical coherence tomography. Using the methods and computer program products, index interface (refracting) surfaces from the raw optical coherence tomography (“OCT”) dataset from an OCT system can be segmented. Normal vectors or partial derivatives of the curvature at a refracting surface can be calculated to obtain a refracted image voxel. A new position of each desired refracted image voxel can be iteratively computed. New refracted corrected voxel positions to an even sampling grid can be interpolated to provide corrected image data. In some embodiments, clinical outputs from the corrected image data can be computed.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: July 5, 2016
    Assignee: Duke University
    Inventors: Joseph A. Izatt, Mingtao Zhao, Anthony N. Kuo
  • Publication number: 20160166144
    Abstract: Optical coherence tomography systems for imaging a whole eye are provided including a sample arm including focal optics that are configured to rapidly switch between at least two scanning modes in less than about 1.0 second.
    Type: Application
    Filed: February 12, 2016
    Publication date: June 16, 2016
    Inventors: Joseph A. Izatt, Eric L. Buckland, Bradley A. Bower, Robert H. Hart
  • Patent number: 9299155
    Abstract: Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: March 29, 2016
    Assignee: Duke University
    Inventors: Sina Farsiu, Stephanie J. Chiu, Cynthia A. Toth, Joseph A. Izatt, Xiao T. Li, Peter Christopher Nicholas
  • Patent number: 9279659
    Abstract: Systems and methods are disclosed for optical coherence tomography (OCT). For example, imaging can use optical phase modulators based on optical delay lines that, in conjunction with a swept-source laser, can be used to achieve heterodyne swept source optical coherence tomography (SSOCT). These techniques resolve the complex conjugate ambiguity in SSOCT, thereby doubling the usable imaging range. This increased imaging range has numerous important clinical applications in ophthalmology, cardiology and radiology, as well as applications in small animal and non-biological imaging. These methods are superior to prior disclosed methods requiring acousto-optic or electro-optic modulators with respect to complexity, efficiency, imaging speed and image quality.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: March 8, 2016
    Assignee: Duke University
    Inventors: Joseph A. Izatt, Al-Hafeez Dhalla
  • Patent number: 9259150
    Abstract: Optical coherence tomography systems for imaging a whole eye are provided including a sample arm including focal optics that are configured to rapidly switch between at least two scanning modes in less than about 1.0 second.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: February 16, 2016
    Assignee: Bioptigen, Inc.
    Inventors: Joseph A. Izatt, Eric L. Buckland, Bradley A. Bower, Robert H. Hart
  • Publication number: 20150371400
    Abstract: Segmentation and identification of closed-contour features in images using graph theory and quasi-polar transform are disclosed. According to an aspect, a method includes representing, in a rectangular domain, an image including a feature of interest. Further, the method includes determining a point within the feature of interest. The method also includes transforming the image of the feature from the rectangular domain to a quasi-polar domain based on the point. The quasi-polar domain is represented as a graph of nodes connected together by edges. The method also includes graph cutting the quasi-polar domain to identify the boundary of the feature of interest in the image.
    Type: Application
    Filed: January 27, 2014
    Publication date: December 24, 2015
    Inventors: Sina Farsiu, Stephanie J. Chiu, Joseph A. Izatt
  • Publication number: 20150342460
    Abstract: Imaging and visualization systems, instruments, and methods using optical coherence tomography (OCT) are disclosed. A method for OCT image capture includes determining a location of a feature of interest within an operative field. The method also includes determining a relative positioning between the feature of interest and an OCT scan location. Further, the method includes controlling capture of an OCT image at a set position relative to the feature of interest based on the relative positioning.
    Type: Application
    Filed: August 11, 2015
    Publication date: December 3, 2015
    Inventors: Joseph A. Izatt, Cynthia A. Toth, Sina Farsiu, Paul V. Hahn, Yuankai K. Tao, Justis P. Ehlers, Justin V. Migacz, Stephanie J. Chiu
  • Patent number: 9173563
    Abstract: Portable optical coherence tomography (OCT) devices including at least one mirror configured to scan at least two directions are provided. The portable OCT devices are configured to provide a portable interface to a sample that can be aligned to the sample without repositioning the sample. Related systems are also provided.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: November 3, 2015
    Assignee: Bioptigen, Inc.
    Inventors: Eric L. Buckland, Joseph A. Izatt, William J. Brown
  • Publication number: 20150077535
    Abstract: Systems and methods for structured illumination super-resolution phase microscopy are disclosed. According to an aspect, an imaging system includes a light source configured to generate light. The system also includes a diffraction grating positioned to receive and diffract the output light. The system also includes a sample holder positioned to receive the diffracted light for transmission through a sample. Further, the system includes an image detector positioned to receive the light transmitted through the sample and configured to generate image data based on the received light. The system also includes a computing device configured to apply subdiffraction resolution reconstruction to the image data for generating an image of the sample.
    Type: Application
    Filed: April 11, 2014
    Publication date: March 19, 2015
    Applicant: Duke University
    Inventors: Joseph A. Izatt, Shwetadwip Chowdhury
  • Patent number: 8908188
    Abstract: Some embodiments of the present invention provide adapters for use in posterior imaging systems. The adapters include lens set configured to adapt the posterior imaging system to operate as an anterior imaging system. Related optical coherence tomography systems and anterior imaging systems are also provided herein.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: December 9, 2014
    Assignee: Bioptigen, Inc.
    Inventors: Eric L. Buckland, Joseph A. Izatt, Seungbum Woo, Michael E. Sullivan
  • Publication number: 20140354951
    Abstract: A system for obtaining low-angle circumferential optical access to an eye of a subject. The system includes a light source to generate a beam of light; a beam steering mechanism to steer the beam of light a focusing lens to focus the beam of light; and a contact lens to direct the beam of light into the eye of the subject, the contact lens including a tapered reflective surface to direct the beam of light into the eye of the subject.
    Type: Application
    Filed: January 24, 2013
    Publication date: December 4, 2014
    Inventors: Joseph A. Izatt, Anthony N. Kuo, Ryan P. McNabb
  • Publication number: 20140334703
    Abstract: Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 13, 2014
    Inventors: Sina Farsiu, Stephanie J. Chiu, Cynthia A. Toth, Joseph A. Izatt, Xiao T. Li, Peter Christopher Nicholas
  • Patent number: 8860796
    Abstract: Optical coherence tomography (OCT) imaging systems for imaging an eye are provided including a source having an associated source arm path and a reference arm having an associated reference arm path coupled to the source path, the reference arm path having an associated reference arm path length. A sample having an associated sample arm path coupled to the source arm and reference arm paths is provided. A reference arm path length adjustment module is coupled to the reference arm. The reference arm path length adjustment module is configured to automatically adjust the reference arm path length such that the reference arm path length is based on an eye length of the subject. Related methods and computer program products are also provided.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: October 14, 2014
    Assignee: Bioptigen, Inc.
    Inventors: Eric L. Buckland, Robert H. Hart, Glenn A. Myers, Joseph A. Izatt