Patents by Inventor Joseph Alfred Iannotti

Joseph Alfred Iannotti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210325348
    Abstract: A system includes a sensor comprising a sensor bonding layer disposed on a surface of the sensor, wherein the sensor bonding layer is a metallic alloy. An inlay includes a planar outer surface, wherein the inlay may be disposed on a curved surface of a structure. A structure bonding layer may be disposed on the planar outer surface of the inlay, wherein the structure bonding layer is a metallic alloy. The sensor bonding layer is coupled to the structure bonding layer via a metallic joint, and the sensor is configured to sense data of the structure through the metallic joint, the structure bonding layer, and the sensor bonding layer. The inlay comprises at least one of a modulus of elasticity, a shape, a thickness, and a size configured to reduce strain transmitted to the sensor.
    Type: Application
    Filed: June 29, 2021
    Publication date: October 21, 2021
    Applicant: General Electric Company
    Inventors: Joseph Alfred Iannotti, Christopher James Kapusta, David Richard Esler
  • Patent number: 11079359
    Abstract: A system includes a structure bonding layer and a sensor. The structure bonding layer is disposed on a structure. The structure bonding layer is a metallic alloy. The sensor includes a non-metallic wafer and a sensor bonding layer disposed on a surface of the non-metallic wafer. The sensor bonding layer is a metallic alloy. The sensor bonding layer is coupled to the structure bonding layer via a metallic joint, and the sensor is configured to sense data of the structure through the metallic joint, the structure bonding layer, and the sensor bonding layer.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: August 3, 2021
    Assignee: General Electric Company
    Inventors: Joseph Alfred Iannotti, Christopher James Kapusta, David Richard Esler
  • Publication number: 20210204397
    Abstract: An electronics package is disclosed. The electronics package includes a first radio frequency (RF) substrate layer, a second RF substrate layer, and a plurality of conductive layers disposed adjacent to at least one of the first RF substrate layer and the second RF substrate layer and including an inner conductive layer disposed between and adjacent to both the first RF substrate layer and the second RF substrate layer. The inner conductive layer bonds the first RF substrate layer to the second RF substrate layer. The electronics package also includes a plurality of conductive interconnects extending through the first RF substrate layer and the second RF substrate layer and electrically coupled between at least two of the plurality of conductive layers.
    Type: Application
    Filed: December 30, 2019
    Publication date: July 1, 2021
    Inventors: Christopher James Kapusta, Stanton Earl Weaver, JR., Joseph Alfred Iannotti
  • Patent number: 10996082
    Abstract: A sensor system includes a rotor antenna, a radio frequency (RF) sensor, a stator antenna, and one or more processors. The rotor antenna and the RF sensor are configured to be disposed on a shaft of a rotor assembly and are conductively connected to each other. The RF sensor generates measurement signals. The stator antenna is mounted to a stator member of the rotor assembly and positioned radially outward from the rotor antenna. The stator antenna is wirelessly connected to the rotor antenna across an air gap. The one or more processors are communicatively connected to the stator antenna and are configured to monitor one or more electrical characteristics of the measurement signals that are received by the stator antenna from the rotor antenna over time as the shaft rotates and to determine rotational speed of the shaft based on recurrent variations in the one or more electrical characteristics.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: May 4, 2021
    Assignee: General Electric Company
    Inventor: Joseph Alfred Iannotti
  • Publication number: 20210123730
    Abstract: A measuring system is disclosed. The measuring system includes a surface acoustic wave (SAW) device including a piezoelectric substrate and a first and second electrode disposed on a surface of the piezoelectric substrate, and a measuring device communicatively coupled to the first electrode via a first probe and the second electrode via a second probe and configured to apply an electrical signal to the first and second electrode to generate an incident bulk acoustic wave within the piezoelectric substrate, detect at least a first reflected bulk acoustic wave and a second reflected bulk acoustic wave at the first and second electrode, and calculate a thickness between a first interface corresponding to the first reflected bulk acoustic wave and a second interface corresponding to the second reflected bulk acoustic wave based on a time elapsed between detecting the first and second reflected bulk acoustic waves.
    Type: Application
    Filed: October 28, 2019
    Publication date: April 29, 2021
    Inventors: Marco Francesco Aimi, Joseph Alfred Iannotti
  • Publication number: 20210125918
    Abstract: A method includes obtaining an active feature layer having a first surface bearing one or more active feature areas. A first capacitor plate of a first capacitor is formed on an interior surface of a cap. A second capacitor plate of the first capacitor is formed on an exterior surface of the cap. The first capacitor plate of the first capacitor overlays and is spaced apart from the second capacitor plate of the first capacitor along a direction that is orthogonal to the exterior surface of the cap to form the first capacitor. The cap is coupled with the first surface of the active feature layer such that the second capacitor plate of the first capacitor is in electrical communication with at least a first active feature of the active feature layer. The cap is bonded with the passive layer substrate.
    Type: Application
    Filed: October 28, 2019
    Publication date: April 29, 2021
    Inventors: Marco Francesco Aimi, Joseph Alfred Iannotti, Joleyn Eileen Brewer
  • Publication number: 20210104812
    Abstract: A wireless access point is disclosed. The wireless access point includes a substrate, an antenna structure disposed on the substrate and configured to transmit and receive wireless electromagnetic communication signals, and a fiber-optic interface disposed on the substrate and communicatively coupled to the antenna structure and a fiber-optic cable. The fiber-optic interface is configured to transmit and receive optical communication signals through the fiber-optic cable.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 8, 2021
    Inventors: Christopher James Kapusta, Joseph Alfred Iannotti, Stanton Earl Weaver, Glen Peter Koste
  • Publication number: 20210017979
    Abstract: A sensor system for monitoring a condition of a piston rod includes an interrogator system having a first coil winding coupled to a housing and radially spaced from the piston rod such that a gap is defined between the first coil winding and the piston rod. A second coil winding is coupled to the piston rod and is inductively coupled to the first coil winding. The second coil winding is configured to communicate with the first coil winding through a range of linear movement of the piston rod relative to the housing. A sensor is coupled to the second coil winding. The sensor is configured to measure a characteristic associated with the piston rod and generate a current in the second coil winding to transmit, via the inductive coupling with the first coil winding, an electrical output signal associated with the characteristic to the interrogator system.
    Type: Application
    Filed: July 19, 2019
    Publication date: January 21, 2021
    Inventors: Joseph Alfred Iannotti, Christopher James Kapusta, Marco Francesco Aimi
  • Publication number: 20210013866
    Abstract: A wafer level assembly is disclosed. The wafer level assembly includes a device wafer, and a plurality of electrodes disposed on the device wafer, wherein the device wafer the plurality of electrodes form a surface acoustic wave (SAW) device, a plurality of device pads disposed on the device wafer, wherein each of the plurality of electrodes are coupled to one of the device pads, a cap wafer coupled to the device wafer through a seal layer, the cap wafer having a plurality of contact pads and a plurality of interconnect pads integral with a surface of the cap wafer, wherein each of the plurality of contact pads is coupled to one of the plurality of interconnect pads, and a plurality of conductive interconnects, wherein each of the plurality of conductive interconnects is coupled between one of the plurality of device pads and one of the plurality of interconnect pads.
    Type: Application
    Filed: July 12, 2019
    Publication date: January 14, 2021
    Inventors: Joseph Alfred Iannotti, Christopher James Kapusta
  • Publication number: 20200400466
    Abstract: A sensor system includes a rotor antenna, a radio frequency (RF) sensor, a stator antenna, and one or more processors. The rotor antenna and the RF sensor are configured to be disposed on a shaft of a rotor assembly and are conductively connected to each other. The RF sensor generates measurement signals. The stator antenna is mounted to a stator member of the rotor assembly and positioned radially outward from the rotor antenna. The stator antenna is wirelessly connected to the rotor antenna across an air gap. The one or more processors are communicatively connected to the stator antenna and are configured to monitor one or more electrical characteristics of the measurement signals that are received by the stator antenna from the rotor antenna over time as the shaft rotates and to determine rotational speed of the shaft based on recurrent variations in the one or more electrical characteristics.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 24, 2020
    Inventor: Joseph Alfred Iannotti
  • Patent number: 10784576
    Abstract: A beam former module includes a package base and an interconnect structure formed within the package base. The beam former module also includes a first true time delay (TTD) module attached to the package base. The first TTD module includes a plurality of switching elements configured to define a signal transmission path between a signal input and a signal output of the first TTD module by selectively activating a plurality of time delay lines. The signal input and the signal output of the first TTD module are electrically coupled to the interconnect structure. In some embodiments, the interconnect structure includes at least one TTD meander line and at least one of the time delay lines of the first TTD module is electrically coupled to the at least one TTD meander line.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: September 22, 2020
    Assignee: General Electric Company
    Inventors: Joseph Alfred Iannotti, Christopher James Kapusta
  • Patent number: 10749612
    Abstract: A sensor system includes a rotor antenna, a radio frequency (RF) sensor, a stator antenna, and one or more frequency selective structures. The rotor antenna and the RF sensor are disposed on an outer surface of a shaft and are conductively connected to each other. The RF sensor generates measurement signals as the shaft rotates. The stator antenna is mounted separate from the shaft and positioned radially outward from the rotor antenna. The stator antenna wirelessly receives the measurement signals from the rotor antenna across an air gap. The one or more frequency selective structures are disposed on the outer surface of the shaft and configured to dissipate electromagnetic current that is conducted along the shaft to alleviate interference of the measurement signals.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: August 18, 2020
    Assignee: General Electric Company
    Inventor: Joseph Alfred Iannotti
  • Patent number: 10677088
    Abstract: A monitoring system for monitoring environmental conditions for rotary members includes a plurality of stationary reader antennas positioned proximate rotary members. A first sensor is coupled to a first rotary member and a second sensor is coupled to a second rotary member. Each sensor is configured to generate environmental condition data. A key phasor is coupled to a third rotary member and configured to generate key phasor data. The monitoring system also includes a data integrator communicatively coupled to each stationary reader antenna and configured to determine measurement values for the first and second environmental condition based on raw data from each stationary reader antennas and data from the key phasor.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: June 9, 2020
    Assignee: NUOVO PIGNONE TECHNOLOGIE SRL
    Inventors: Yongjae Lee, Joseph Alfred Iannotti, Filippo Gerbi
  • Publication number: 20200124573
    Abstract: A system includes a structure bonding layer and a sensor. The structure bonding layer is disposed on a structure. The structure bonding layer is a metallic alloy. The sensor includes a non-metallic wafer and a sensor bonding layer disposed on a surface of the non-metallic wafer. The sensor bonding layer is a metallic alloy. The sensor bonding layer is coupled to the structure bonding layer via a metallic joint, and the sensor is configured to sense data of the structure through the metallic joint, the structure bonding layer, and the sensor bonding layer.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 23, 2020
    Inventors: Joseph Alfred Iannotti, Christopher James Kapusta, David Richard Esler
  • Patent number: 10594030
    Abstract: A true time delay (TTD) module includes a substrate and a transmission line formed on the substrate. The transmission line includes time delay lines that define signal paths of varying lengths between a signal input and a signal output of the TTD module. A plurality of switching elements are positioned along the transmission line and are selectively controllable to define a signal transmission path between the signal input and the signal output. The switching elements include an input switching element positioned at a first end of each of the plurality of time delay lines, an output switching element positioned at a second end of each of the plurality of time delay lines, and at least one intermediate switching element positioned between the input switching element and the output switching element of at least one of the plurality of time delay lines.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: March 17, 2020
    Assignee: General Electric Company
    Inventors: Yongjae Lee, Joseph Alfred Iannotti, Steven YueHin Go
  • Patent number: 10537024
    Abstract: A process for fabricating a printed circuit assembly is presented. The process includes providing a first base substrate having a first surface and a second surface opposite to the first surface; providing a flexible circuit layer including a first region having a first set of signal traces and a second region having a second set of signal traces, wherein the first region and the second region are separated by a first intermediate region; disposing the first region of the flexible circuit layer on the first surface of the first base substrate; bending the flexible circuit layer at the first intermediate region to surround a thickness side of the first base substrate; and disposing the second region of the flexible circuit layer on the second surface of the first base substrate. A printed circuit assembly is also presented.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: January 14, 2020
    Assignee: General Electric Company
    Inventor: Joseph Alfred Iannotti
  • Patent number: 10450863
    Abstract: A gas turbine engine and system for measuring torque for a gas turbine engine shaft is provided. The system may include a first sensor module, a second sensor module, a first coupler, a second coupler, and a static antenna. The first and second sensor modules may include strain sensors positioned on the gas turbine engine shaft. The first coupler may be positioned on the gas turbine engine shaft and electrically connected with the first sensor module. The second coupler may be positioned on the gas turbine engine shaft and electrically connected with the second sensor module. The static antenna may include a first band and a second band. The first signal band may be in operable communication with the first sensor module and positioned radially outward from the first coupler. The second signal band may be in operable communication with the second sensor module and positioned radially outward from the second coupler.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: October 22, 2019
    Assignee: General Electric Company
    Inventors: Douglas Scott Jacobs, Aaron Jay Knobloch, Robert Edward Goeller, Mudassar Ali Muhammad, Joseph Alfred Iannotti
  • Publication number: 20190239355
    Abstract: A process for fabricating a printed circuit assembly is presented. The process includes providing a first base substrate having a first surface and a second surface opposite to the first surface; providing a flexible circuit layer including a first region having a first set of signal traces and a second region having a second set of signal traces, wherein the first region and the second region are separated by a first intermediate region; disposing the first region of the flexible circuit layer on the first surface of the first base substrate; bending the flexible circuit layer at the first intermediate region to surround a thickness side of the first base substrate; and disposing the second region of the flexible circuit layer on the second surface of the first base substrate. A printed circuit assembly is also presented.
    Type: Application
    Filed: January 30, 2018
    Publication date: August 1, 2019
    Inventor: Joseph Alfred Iannotti
  • Patent number: 10326200
    Abstract: An RF transmission system includes an RF source that provides an RF input and one or more RF MEMS transmission devices coupled to the RF source to receive the RF input therefrom and generate output signals for transmission to an RF load. Each of the RF MEMS transmission devices comprises a substrate, a conducting line formed on the substrate to provide signal transmission paths between a signal input of the RF MEMS transmission device and a signal output of the RF MEMS transmission device, and a plurality of switching elements positioned along the conducting line and selectively controllable to define the signal transmission paths between the signal input and the signal output. Each of the RF source and the RF load has a first characteristic impedance and the one or more RF MEMS transmission devices have a second characteristic impedance that is greater than the first characteristic impedance.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: June 18, 2019
    Assignee: General Electric Company
    Inventor: Joseph Alfred Iannotti
  • Publication number: 20190115659
    Abstract: An RF transmission system includes an RF source that provides an RF input and one or more RF MEMS transmission devices coupled to the RF source to receive the RF input therefrom and generate output signals for transmission to an RF load. Each of the RF MEMS transmission devices comprises a substrate, a conducting line formed on the substrate to provide signal transmission paths between a signal input of the RF MEMS transmission device and a signal output of the RF MEMS transmission device, and a plurality of switching elements positioned along the conducting line and selectively controllable to define the signal transmission paths between the signal input and the signal output. Each of the RF source and the RF load has a first characteristic impedance and the one or more RF MEMS transmission devices have a second characteristic impedance that is greater than the first characteristic impedance.
    Type: Application
    Filed: October 18, 2017
    Publication date: April 18, 2019
    Inventor: Joseph Alfred Iannotti