Patents by Inventor Joseph C. Olson

Joseph C. Olson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230260746
    Abstract: Embodiments described herein relate to methods and apparatus for forming gratings having a plurality of fins with different slant angles on a substrate and forming fins with different slant angles on successive substrates using angled etch systems and/or an optical device. The methods include positioning portions of substrates retained on a platen in a path of an ion beam. The substrates have a grating material disposed thereon. The ion beam is configured to contact the grating material at an ion beam angle ? relative to a surface normal of the substrates and form gratings in the grating material.
    Type: Application
    Filed: April 25, 2023
    Publication date: August 17, 2023
    Inventors: Joseph C. OLSON, Morgan EVANS, Rutger MEYER TIMMERMAN THIJSSEN
  • Publication number: 20230251430
    Abstract: A method for forming a device structure is disclosed. The method of forming a device structure includes forming a variable-depth structure in a device material layer using a laser ablation. A plurality of device structures is formed in the variable-depth structure to define slanted device structures therein. The variable-depth structure and the slanted device structures are formed using an etch process.
    Type: Application
    Filed: April 21, 2023
    Publication date: August 10, 2023
    Inventors: Peter KURUNCZI, Joseph C. OLSON, Morgan EVANS, Rutger MEYER TIMMERMAN THIJSSEN
  • Patent number: 11715621
    Abstract: A system may include a substrate stage, configured to support a substrate, where a main surface of the substrate defines a substrate plane. The system may include an ion source, including an extraction assembly that is oriented to direct an ion beam to the substrate along a trajectory defining a non-zero angle of incidence with respect to a perpendicular to the substrate plane. The system may include a radical source oriented to direct a radical beam to the substrate along a trajectory defining the non-zero angle of incidence with respect to a perpendicular to the substrate plane. The substrate stage may be further configured to scan the substrate along a first direction, lying with the substrate plane, while the main surface of the substrate is oriented within the substrate plane.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: August 1, 2023
    Assignee: APPLIED Materials, Inc.
    Inventors: Peter F. Kurunczi, Morgan Evans, Joseph C. Olson, Christopher A. Rowland, James Buonodono
  • Publication number: 20230207247
    Abstract: An apparatus may include a cyclotron to receive an ion beam as an incident ion beam at an initial energy, and output the ion beam as an accelerated ion beam at an accelerated ion energy. The apparatus may further include an RF source to output an RF power signal to the cyclotron chamber, the RF power source comprising a variable power amplifier, and a movable stripper, translatable to intercept the ion beam within the cyclotron at a continuum of different positions.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 29, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Frank Sinclair, Klaus Becker, Joseph C. Olson, Tseh-Jen Hsieh, Morgan Patrick Dehnel, Anand Mathai George
  • Publication number: 20230187166
    Abstract: A system comprising a spinning disk is disclosed. The system comprises a semiconductor processing system, such as a high energy implantation system. The semiconductor processing system produces a spot ion beam, which is directed to a plurality of workpieces, which are disposed on the spinning disk. The spinning disk comprises a rotating central hub with a plurality of platens. The plurality of platens may extend outward from the central hub and workpieces are electrostatically clamped to the platens. The plurality of platens may also be capable of rotation. The central hub also controls the rotation of each of the platens about an axis orthogonal to the rotation axis of the central hub. In this way, variable angle implants may be performed. Additionally, this allows the workpieces to be mounted while in a horizontal orientation.
    Type: Application
    Filed: December 10, 2021
    Publication date: June 15, 2023
    Inventors: Robert Mitchell, Frank Sinclair, Joseph C. Olson, William T. Weaver, Nick Parisi
  • Patent number: 11670482
    Abstract: Embodiments described herein relate to methods and apparatus for forming gratings having a plurality of fins with different slant angles on a substrate and forming fins with different slant angles on successive substrates using angled etch systems and/or an optical device. The methods include positioning portions of substrates retained on a platen in a path of an ion beam. The substrates have a grating material disposed thereon. The ion beam is configured to contact the grating material at an ion beam angle ? relative to a surface normal of the substrates and form gratings in the grating material.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: June 6, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Joseph C. Olson, Morgan Evans, Rutger Meyer Timmerman Thijssen
  • Patent number: 11640898
    Abstract: Aspects of the disclosure relate to apparatus for the fabrication of waveguides. In one example, an angled ion source is utilized to project ions toward a substrate to form a waveguide which includes angled gratings. In another example, an angled electron beam source is utilized to project electrons toward a substrate to form a waveguide which includes angled gratings. Further aspects of the disclosure provide for methods of forming angled gratings on waveguides utilizing an angled ion beam source and an angled electron beam source.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: May 2, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Ludovic Godet, Joseph C. Olson, Rutger Meyer Timmerman Thijssen
  • Patent number: 11587778
    Abstract: Provided herein are approaches for performing electrodynamic mass analysis with a radio frequency (RF) biased ion source to reduce ion beam energy spread. In some embodiments, a system may include an ion source including a power supply, the ion source operable to generate a plasma within a chamber housing, and an extraction power assembly including a first power supply and a second power supply electrically coupled with the chamber housing of the ion source, wherein the first power supply and the second power supply are operable to bias the chamber housing of the ion source with a time modulated voltage to extract an ion beam from the ion source. The system may further include an electrodynamic mass analysis (EDMA) assembly operable to receive the ion beam and perform mass analysis on the ion beam.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: February 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Alexandre Likhanskii, Joseph C. Olson, Frank Sinclair, Peter F. Kurunczi
  • Patent number: 11554445
    Abstract: Embodiments of the present disclosure relate to methods for controlling etch depth by providing localized heating across a substrate. The method for controlling temperatures across the substrate can include individually controlling a plurality of heating pixels disposed in a dielectric body of a substrate support assembly. The plurality of heating pixels provide temperature distributions on a first surface of the substrate disposed on a support surface of the dielectric body. The temperature distributions correspond to a plurality of portions of at least one grating on a second surface of the substrate to be exposed to an ion beam. Additionally, the temperatures can be controlled by individually controlling light emitting diodes (LEDs) of LED arrays. The substrate is exposed to the ion beam to form a plurality of fins on the at least one grating. The at least one grating has a distribution of depths corresponding to the temperature distributions.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: January 17, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Morgan Evans, Joseph C. Olson
  • Patent number: 11557987
    Abstract: Embodiments of the present disclosure generally relate to substrate support assemblies for retaining a surface of a substrate having one or more devices disposed on the surface without contacting the one or more devices and deforming the substrate, and a system having the same. In one embodiment, the substrate support assembly includes an edge ring coupled to a body of the substrate support assembly. A controller is coupled to actuated mechanisms of a plurality of pixels coupled to the body of the substrate support assembly such that portions of pixels corresponding to a portion of the surface of a substrate to be retained are positioned to support the portion without contacting one or more devices disposed on the surface of the substrate to be retained on the support surface.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: January 17, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Wayne McMillan, Visweswaren Sivaramakrishnan, Joseph C. Olson, Ludovic Godet, Rutger Meyer Timmerman Thijssen, Naamah Argaman
  • Patent number: 11512385
    Abstract: Embodiments of the disclosure generally relate to methods of forming gratings. The method includes depositing a resist material on a grating material disposed over a substrate, patterning the resist material into a resist layer, projecting a first ion beam to the first device area to form a first plurality of gratings, and projecting a second ion beam to the second device area to form a second plurality of gratings. Using a patterned resist layer allows for projecting an ion beam over a large area, which is often easier than focusing the ion beam in a specific area.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: November 29, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Joseph C. Olson, Ludovic Godet, Rutger Meyer Timmerman Thijssen, Morgan Evans, Jinxin Fu
  • Patent number: 11456152
    Abstract: Embodiments described herein relate to methods and apparatus for forming gratings having a plurality of fins with different slant angles on a substrate and forming fins with different slant angles on successive substrates using angled etch systems and/or an optical device. The methods include positioning portions of substrates retained on a platen in a path of an ion beam. The substrates have a grating material disposed thereon. The ion beam is configured to contact the grating material at an ion beam angle ? relative to a surface normal of the substrates and form gratings in the grating material.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: September 27, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Joseph C. Olson, Morgan Evans, Rutger Meyer Timmerman Thijssen
  • Patent number: 11456205
    Abstract: Methods of producing grating materials with variable height fins are provided. In one example, a method may include providing a mask layer atop a substrate, the mask layer including a first opening over a first processing area and a second opening over a second processing area. The method may further include etching the substrate to recess the first and second processing areas, forming a grating material over the substrate, and etching the grating material in the first and second processing areas to form a plurality of structures oriented at a non-zero angle with respect to a vertical extending from a top surface of the substrate.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: September 27, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Morgan Evans, Joseph C. Olson, Rutger Meyer Timmerman Thijssen, Daniel Distaso, Ryan Boas
  • Publication number: 20220301926
    Abstract: Systems and methods discussed herein can be used to form gratings at various slant angles across a grating material on a single substrate by determining an ion beam angle and changing the angle of an ion beam among and between ion beam angles to form gratings with varying angles and cross-sectional geometries. The substrate can be rotated around a central axis, and one or more process parameters, such as a duty cycle of the ion beam, can be modulated to form a grating with a depth gradient.
    Type: Application
    Filed: June 3, 2022
    Publication date: September 22, 2022
    Inventors: Rutger MEYER TIMMERMAN THIJSSEN, Joseph C. OLSON, Morgan EVANS
  • Publication number: 20220260764
    Abstract: Embodiments described herein relate to methods of forming gratings with different slant angles on a substrate and forming gratings with different slant angles on successive substrates using angled etch systems. The methods include positioning portions of substrates retained on a platen in a path of an ion beam. The substrates have a grating material disposed thereon. The ion beam is configured to contact the grating material at an ion beam angle relative to a surface normal of the substrates and form gratings in the grating material. The substrates are rotated about an axis of the platen resulting in rotation angles ? between the ion beam and a surface normal of the gratings. The gratings have slant angles relative to the surface normal of the substrates. The rotation angles ? selected by an equation ?=cos?1 (tan()/tan()).
    Type: Application
    Filed: May 5, 2022
    Publication date: August 18, 2022
    Inventors: Rutger MEYER TIMMERMAN THIJSSEN, Morgan EVANS, Joseph C. OLSON
  • Patent number: 11404278
    Abstract: An optical grating component may include a substrate, and an optical grating, the optical grating being disposed on the substrate. The optical grating may include a plurality of angled structures, disposed at a non-zero angle of inclination with respect to a perpendicular to a plane of the substrate, wherein the plurality of angled structures are arranged to define a variable depth along a first direction, the first direction being parallel to the plane of the substrate.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: August 2, 2022
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: John Hautala, Morgan Evans, Rutger Meyer Timmerman Thijssen, Joseph C. Olson
  • Publication number: 20220238295
    Abstract: Methods of producing grating materials with variable height are provided. In one example, a method may include providing a grating material atop a substrate, and positioning a shadow mask between the grating material and an ion source, wherein the shadow mask is separated from the grating material by a distance. The method may further include etching the grating material using an ion beam passing through a set of openings of the shadow mask, wherein a first depth of a first portion of the grating material is different than a second depth of a second portion of the grating material.
    Type: Application
    Filed: April 18, 2022
    Publication date: July 28, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Joseph C. Olson, Morgan Evans, Thomas Soldi, Rutger Meyer Timmerman Thijssen, Maurice Emerson Peploski
  • Patent number: 11397289
    Abstract: Embodiments described herein relate to methods of forming gratings with different slant angles on a substrate and forming gratings with different slant angles on successive substrates using angled etch systems. The methods include positioning portions of substrates retained on a platen in a path of an ion beam. The substrates have a grating material disposed thereon. The ion beam is configured to contact the grating material at an ion beam angle ? relative to a surface normal of the substrates and form gratings in the grating material. The substrates are rotated about an axis of the platen resulting in rotation angles ? between the ion beam and a surface normal of the gratings. The gratings have slant angles ?? relative to the surface normal of the substrates. The rotation angles ? selected by an equation ?=cos?1(tan(??)/tan(?)).
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: July 26, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Rutger Meyer Timmerman Thijssen, Morgan Evans, Joseph C. Olson
  • Patent number: 11387073
    Abstract: A system and method that is capable of measuring the incident angle of an ion beam, especially an ion beam comprising heavier ions, is disclosed. In one embodiment, X-rays, rather than ions, are used to determine the channeling direction. In another embodiment, the workpiece is constructed, at least in part, of a material having a high molecular weight such that heaver ion beams can be measured. Further, in another embodiment, the parameters of the ion beam are measured across an entirety of the beam, allowing components of the ion implantation system to be further tuned to create a more uniform beam.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: July 12, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Frank Sinclair, Jonathan Gerald England, Joseph C. Olson
  • Patent number: 11380578
    Abstract: Systems and methods discussed herein can be used to form gratings at various slant angles across a grating material on a single substrate by determining an ion beam angle and changing the angle of an ion beam among and between ion beam angles to form gratings with varying angles and cross-sectional geometries. The substrate can be rotated around a central axis, and one or more process parameters, such as a duty cycle of the ion beam, can be modulated to form a grating with a depth gradient.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: July 5, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rutger Meyer Timmerman Thijssen, Joseph C. Olson, Morgan Evans