Patents by Inventor Joseph C. Olson

Joseph C. Olson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9437392
    Abstract: One embodiment of this ion implanter includes an ion source and a process chamber. This process chamber is connected to the ion source and separated from the ion source by a plurality of extraction electrodes. A carrier holds multiple workpieces. A mask loader in the process chamber connects a mask to the carrier. A transfer chamber and load lock may be connected to the process chamber. The ion implanter is configured to perform either blanket or selective implantation of the workpieces.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: September 6, 2016
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: William T. Weaver, Charles T. Carlson, Joseph C. Olson, James Buonodono, Paul Sullivan
  • Patent number: 9377692
    Abstract: Methods and apparatuses for minimizing line edge/width roughness in lines formed by photolithography are provided. The random diffusion of acid generated by a photoacid generator during a lithography process contributes to line edge/width roughness. Methods disclosed herein apply an electric field and/or a magnetic field during photolithography processes. The field application controls the diffusion of the acids generated by the photoacid generator along the line and spacing direction, preventing the line edge/width roughness that results from random diffusion. Apparatuses for carrying out the aforementioned methods are also disclosed herein.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: June 28, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Peng Xie, Ludovic Godet, Tristan Ma, Joseph C. Olson, Christopher Bencher
  • Publication number: 20160111254
    Abstract: A system and method for processing a workpiece is disclosed. A plasma chamber is used to create a ribbon ion beam, extracted through an extraction aperture. A workpiece is translated proximate the extraction aperture so as to expose different portions of the workpiece to the ribbon ion beam. As the workpiece is being exposed to the ribbon ion beam, at least one parameter associated with the plasma chamber is varied. The variable parameters include extraction voltage duty cycle, workpiece scan velocity and the shape of the ion beam. In some embodiments, after the entire workpiece has been exposed to the ribbon ion beam, the workpiece is rotated and exposed to the ribbon ion beam again, while the parameters are varied. This sequence may be repeated a plurality of times.
    Type: Application
    Filed: October 8, 2015
    Publication date: April 21, 2016
    Inventors: Morgan D. Evans, Kevin Anglin, Daniel Distaso, John Hautala, Steven Robert Sherman, Joseph C. Olson
  • Patent number: 9269538
    Abstract: A method of achieving ion beam uniformity control using ion beam blockers. The method includes generating an ion beam, detecting a current profile of said ion beam with an ion beam blocker unit, wherein said detected current profile is an initial current profile, blocking a portion of said ion beam with said ion beam blocker unit to achieve a second current profile that is different from the initial current profile, and implanting said ion beam into a workpiece after said blocking.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: February 23, 2016
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventor: Joseph C. Olson
  • Patent number: 9269536
    Abstract: An electrode adjustment method and apparatus are disclosed for use in workpiece processing. The assembly may include an electrode assembly having first and second ends. First and second manipulators may be coupled to the first and second ends. The manipulators may be used to selectively impart movement to the first and second ends of the electrode assembly to adjust one or more properties of an ion beam passing through the electrodes. The first and second manipulators may be independently actuatable so that the first and second ends of the electrode can be adjusted independent of one another. Methods of using the disclosed apparatus are also disclosed.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: February 23, 2016
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Jon Ballou, Jeannot Morin, Manny Sieradzki, Joseph C. Olson
  • Patent number: 9269542
    Abstract: In one embodiment, a system for patterning a substrate includes a plasma chamber; a power source to generate a plasma within the plasma chamber; and an extraction plate system comprising a plurality of apertures and disposed along a side of the plasma chamber. The extraction plate system is configured to receive an extraction voltage that biases the extraction plate system with respect to the plasma chamber wherein the plurality of apertures are configured to extract a plurality of respective charged particle beamlets from the plasma. The system further includes a projection optics system to direct at least one of the plurality of charged particle beamlets to the substrate.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: February 23, 2016
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Frank Sinclair, Joseph C. Olson
  • Publication number: 20150355549
    Abstract: Methods and apparatuses for minimizing line edge/width roughness in lines formed by photolithography are provided. The random diffusion of acid generated by a photoacid generator during a lithography process contributes to line edge/width roughness. Methods disclosed herein apply an electric field and/or a magnetic field during photolithography processes. The field application controls the diffusion of the acids generated by the photoacid generator along the line and spacing direction, preventing the line edge/width roughness that results from random diffusion. Apparatuses for carrying out the aforementioned methods are also disclosed herein.
    Type: Application
    Filed: June 10, 2014
    Publication date: December 10, 2015
    Inventors: Peng XIE, Ludovic GODET, Tristan MA, Joseph C. OLSON, Christopher BENCHER
  • Publication number: 20150270099
    Abstract: A method of achieving ion beam uniformity control using ion beam blockers. The method includes generating an ion beam, detecting a current profile of said ion beam with an ion beam blocker unit, wherein said detected current profile is an initial current profile, blocking a portion of said ion beam with said ion beam blocker unit to achieve a second current profile that is different from the initial current profile, and implanting said ion beam into a workpiece after said blocking.
    Type: Application
    Filed: March 21, 2014
    Publication date: September 24, 2015
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventor: Joseph C. Olson
  • Patent number: 9029811
    Abstract: An apparatus to control an ion beam includes a scanner configured in an first state to scan the ion beam wherein the scanner outputs the ion beam as a diverging ion beam; a collimator configured to receive along a side of the collimator the diverging ion beam and to output the diverging ion beam as a collimated ion beam; a beam adjustment component that extends proximate the side of the collimator; and a controller configured to send a first signal when the scanner is in the first state to the beam adjustment component to adjust ion trajectories of the diverging ion beam from a first set of trajectories to a second set of trajectories.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: May 12, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Kenneth H. Purser, Christopher Campbell, Frank Sinclair, Robert C. Lindberg, Joseph C. Olson
  • Publication number: 20150123006
    Abstract: In one embodiment, a system for patterning a substrate includes a plasma chamber; a power source to generate a plasma within the plasma chamber; and an extraction plate system comprising a plurality of apertures and disposed along a side of the plasma chamber. The extraction plate system is configured to receive an extraction voltage that biases the extraction plate system with respect to the plasma chamber wherein the plurality of apertures are configured to extract a plurality of respective charged particle beamlets from the plasma. The system further includes a projection optics system to direct at least one of the plurality of charged particle beamlets to the substrate.
    Type: Application
    Filed: November 1, 2013
    Publication date: May 7, 2015
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Frank Sinclair, Joseph C. Olson
  • Publication number: 20150108362
    Abstract: An apparatus to control an ion beam includes a scanner configured in an first state to scan the ion beam wherein the scanner outputs the ion beam as a diverging ion beam; a collimator configured to receive along a side of the collimator the diverging ion beam and to output the diverging ion beam as a collimated ion beam; a beam adjustment component that extends proximate the side of the collimator; and a controller configured to send a first signal when the scanner is in the first state to the beam adjustment component to adjust ion trajectories of the diverging ion beam from a first set of trajectories to a second set of trajectories.
    Type: Application
    Filed: January 24, 2014
    Publication date: April 23, 2015
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Kenneth H. Purser, Christopher Campbell, Frank Sinclair, Robert C. Lindberg, Joseph C. Olson
  • Publication number: 20150108361
    Abstract: An ion beam scanner includes a first scanner stage having a first opening to transmit an ion beam, the first scanner stage to generate, responsive to a first oscillating deflection signal, a first oscillating deflecting field within the first opening; a second scanner stage disposed downstream of the first scanner stage and having a second opening to transmit the ion beam, the second scanner stage to generate, responsive to a second oscillating deflection signal, a second oscillating deflecting field within the second opening that is opposite in direction to the first oscillating deflecting field, and a scan controller to synchronize the first oscillating deflection signal and second oscillating deflection signal to generate a plurality of ion trajectories when the scanned ion beam exits the second stage that define a common focal point.
    Type: Application
    Filed: January 24, 2014
    Publication date: April 23, 2015
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Kenneth H. Purser, Christopher Campbell, Frank Sinclair, Robert C. Lindberg, Joseph C. Olson
  • Patent number: 9012337
    Abstract: A system and method for maintain a desired degree of platen flatness is disclosed. A laser system is used to measure the flatness of a platen. The temperature of the platen is then varied to achieve the desired level of flatness. In some embodiments, this laser system is only used during a set up period and the resulting desired temperature is then used during normal operation. In other embodiments, a laser system is used to measure the flatness of the platen, even while the workpiece is being processed.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: April 21, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Shengwu Chang, Joseph C. Olson, Frank Sinclair, Matthew P. McClellan, Antonella Cucchetti
  • Patent number: 9006692
    Abstract: A system to control an ion beam in an ion implanter includes a detector to perform a plurality of beam current measurements of the ion beam along a first direction perpendicular to a direction of propagation of the ion beam. The system also includes an analysis component to determine a beam current profile based upon the plurality of beam current measurements, the beam current profile comprising a variation of beam current along the first direction; and an adjustment component to adjust a height of the ion beam along the first direction when the beam current profile indicates the beam height is below a threshold.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: April 14, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Stanislav S. Todorov, George M. Gammel, Richard Allen Sprenkle, Norman E. Hussey, Frank Sinclair, Shengwu Chang, Joseph C. Olson, David Roger Timberlake, Kurt T. Decker-Lucke
  • Patent number: 8993980
    Abstract: An ion beam scanner includes a first scanner stage having a first opening to transmit an ion beam, the first scanner stage to generate, responsive to a first oscillating deflection signal, a first oscillating deflecting field within the first opening; a second scanner stage disposed downstream of the first scanner stage and having a second opening to transmit the ion beam, the second scanner stage to generate, responsive to a second oscillating deflection signal, a second oscillating deflecting field within the second opening that is opposite in direction to the first oscillating deflecting field, and a scan controller to synchronize the first oscillating deflection signal and second oscillating deflection signal to generate a plurality of ion trajectories when the scanned ion beam exits the second stage that define a common focal point.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: March 31, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Kenneth H. Purser, Christopher Campbell, Frank Sinclair, Robert C. Lindberg, Joseph C. Olson
  • Patent number: 8974683
    Abstract: A method of reducing roughness in an opening in a surface of a resist material disposed on a substrate, comprises generating a plasma having a plasma sheath and ions therein. The method also includes modifying a shape of a boundary defined between the plasma and the plasma sheath with a plasma sheath modifier so that a portion of the boundary facing the resist material is not parallel to a plane defined by the surface of the substrate. The method also includes providing a first exposure of ions while the substrate is in a first position, the first exposure comprising ions accelerated across the boundary having the modified shape toward the resist material over an angular range with respect to the surface of the substrate.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: March 10, 2015
    Inventors: Ludovic Godet, Patrick M. Martin, Joseph C. Olson, Andrew J. Hornak
  • Patent number: 8937004
    Abstract: A plasma processing apparatus comprises a plasma source configured to produce a plasma in a plasma chamber, such that the plasma contains ions for implantation into a workpiece. The apparatus also includes a focusing plate arrangement having an aperture arrangement configured to modify a shape of a plasma sheath of the plasma proximate the focusing plate such that ions exiting an aperture of the aperture arrangement define focused ions. The apparatus further includes a processing chamber containing a workpiece spaced from the focusing plate such that a stationary implant region of the focused ions at the workpiece is substantially narrower that the aperture. The apparatus is configured to create a plurality of patterned areas in the workpiece by scanning the workpiece during ion implantation.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: January 20, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Anthony Renau, Ludovic Godet, Timothy J. Miller, Joseph C. Olson, Vikram Singh, James Buonodono, Deepak A. Ramappa, Russell J. Low, Atul Gupta, Kevin M. Daniels
  • Patent number: 8884244
    Abstract: A system for dual mode operation in an ion implanter may include a movable beam blocker to adjust beam width of an ion beam in a first direction perpendicular to a first local direction of propagation of the ion beam. The system may further include a scanner to scan the ion beam in a second direction perpendicular to a second local direction of propagation of the ion beam when in a first state and to transmit the ion beam unperturbed in a second state; and mode selector to send a set of signals to the movable beam blocker and to the scanner in order to adjust the width of the ion beam and state of the scanner in concert.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: November 11, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Kenneth H. Purser, Christopher Campbell, Frank Sinclair, Robert C. Lindberg, Joseph C. Olson
  • Publication number: 20140326179
    Abstract: A system to control an ion beam in an ion implanter includes a detector to perform a plurality of beam current measurements of the ion beam along a first direction perpendicular to a direction of propagation of the ion beam. The system also includes an analysis component to determine a beam current profile based upon the plurality of beam current measurements, the beam current profile comprising a variation of beam current along the first direction; and an adjustment component to adjust a height of the ion beam along the first direction when the beam current profile indicates the beam height is below a threshold.
    Type: Application
    Filed: September 25, 2013
    Publication date: November 6, 2014
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Stanislav S. Todorov, George M. Gammel, Richard Allen Sprenkle, Norman E. Hussey, Frank Sinclair, Shengwu Chang, Joseph C. Olson, David Roger Timberlake, Kurt T. Decker-Lucke
  • Patent number: 8853653
    Abstract: A system to control an ion beam in an ion implanter includes a detector system to detect a plurality of beam current measurements of the ion beam at a first frequency and an analysis component to determine a variation of the ion beam based upon the plurality of beam current measurements, the variation corresponding to a beam current variation of the ion beam at a second frequency different from the first frequency. The system also includes an adjustment component to adjust the ion beam in response to an output of the analysis component to reduce the variation, wherein the analysis component and the adjustment component are configured to dynamically reduce the variation of the ion beam below a threshold value while the ion beam is generated in the ion implanter.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: October 7, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Stanislav S. Todorov, George M. Gammel, Richard Allen Sprenkle, Norman E. Hussey, Frank Sinclair, Shengwu Chang, Joseph C. Olson, David Roger Timberlake, Kurt T. Decker-Lucke