Patents by Inventor Joseph C. Spagnola

Joseph C. Spagnola has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11752749
    Abstract: A composite article includes a multilayer barrier assembly bonded to a substrate, and a top polymer layer bonded to the multilayer barrier assembly opposite the substrate. The multilayer barrier assembly comprises a base polymer layer and a base inorganic barrier layer. The base polymer layer comprises a polymerized reaction product of polymerizable components comprising at least one di(meth)acrylate represented by the formula Each R1 independently represents H or methyl; each R2 independently represents an alkyl group having from 1 to 4 carbon atoms; x=0, 1, 2, 3, or 4; and z=0, 1, 2, 3, or 4, with the provisos that at least one of x and z is not zero and 1?x+z?4. Methods of making the same are also disclosed.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: September 12, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Robert S. Clough, Joseph C. Spagnola, Christopher S. Lyons, Mark D. Weigel, Thomas P. Klun
  • Publication number: 20230271401
    Abstract: The present disclosure provides an article including a layer having a nanostructured first surface including nanofeatures and an opposing second surface, and an inorganic layer including a major surface bonded to a portion of the nanostructured first surface. The nanostructured first surface includes protruding features that are formed of a single composition and/or recessed features. The article includes at least one enclosed void defined in part by the nanostructured first surface. The present disclosure also provides a method of making the article including treating a major surface of an inorganic layer with a coupling agent, contacting a nanostructured surface of a layer with the treated inorganic layer, and securing the two layers together via a bonded coupling agent by bonding at least one of the nanostructured surface or the treated inorganic layer. In addition, the present disclosure provides an optical element including the article.
    Type: Application
    Filed: July 28, 2021
    Publication date: August 31, 2023
    Inventors: Jeffrey L. Solomon, Christopher S. Lyons, Joseph C. Spagnola, Thomas P. Klun
  • Publication number: 20230212746
    Abstract: A system. The system may include a first zone into which a first precursor is introduced; a second zone into which a second precursor is introduced; a third zone between the first zone and the second zone and in which a reactive species is generated; a fourth zone between the first zone and the third zone; a fifth zone between the second zone and the third zone; wherein a process gas is introduced into the fourth zone and the fifth zone; wherein the reactive species and the first precursor is mixed in the fourth zone and the reactive species and the second precursor is mixed in the fifth zone; and a substrate transport mechanism.
    Type: Application
    Filed: May 4, 2021
    Publication date: July 6, 2023
    Inventors: Cedric Bedoya, Brandon R. Pietz, Tarris A. Sveback, Joseph C. Spagnola
  • Publication number: 20230166000
    Abstract: An article. The article includes a substrate, wherein the substrate having two opposing major surfaces; and particles coated with a metal oxide on the substrate: particles coated with a metal on the substrate; wherein the coated particles are randomly distributed on or in the substrate; and wherein at least some of coated particles are discrete particles.
    Type: Application
    Filed: December 4, 2020
    Publication date: June 1, 2023
    Inventors: Minguha Dai, Jie J. Liu, Joseph C. Spagnola, Stephen A. O. Olson, Ta-Hua Yu, Junkang J. Liu, Lei Zhang
  • Patent number: 11584113
    Abstract: A composite article includes a multilayer barrier assembly bonded to a substrate, and a top polymer layer bonded to the multilayer barrier assembly opposite the substrate. The multilayer barrier assembly comprises a base polymer layer and a base inorganic barrier layer. The base polymer layer comprises a polymerized reaction product of polymerizable components comprising at least one di(meth)acrylate represented by the formula: Formula (I) Each R1 independently represents H or methyl; each R2 independently represents an alkyl group having from 1 to 4 carbon atoms; x=0, 1, 2, 3, or 4; and z=0, 1, 2, 3, or 4, with the provisos that at least one of x and z is not zero and 1?x+z?4. Methods of making the same are also disclosed.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: February 21, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Robert S. Clough, Joseph C. Spagnola, Christopher S. Lyons, Mark D. Weigel, Thomas P. Klun
  • Patent number: 11492453
    Abstract: Urea (multi)-(meth)acrylate (multi)-silane precursor compounds, synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds, either neat or in a solvent, and optionally with a catalyst, such as a tin compound, to accelerate the reaction. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-(meth)acrylate (multi)-silane precursor compound synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: November 8, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Publication number: 20220033691
    Abstract: An article comprising a flexible polymer substrate having two major surfaces, a surface layer comprising metal, metal oxide, silicon flexible polymer substrate; and a coating disposed on at least one surface layer, wherein the coating comprises a fluorinated polymer bonded to the surface layer; wherein the fluorinated polymer has the following general formula (I), where n=6 to 120; and where n=6 to 120; and where m=1 to 25 (R1); (R2); or where m=1 to 25 (R3).
    Type: Application
    Filed: October 2, 2018
    Publication date: February 3, 2022
    Inventors: John C. Clark, James R. Imbertson, Mark E. Mueller, Jayshree Seth, Joseph C. Spagnola, Dennis E. Vogel, Kim M. Vogel
  • Patent number: 11192989
    Abstract: Compositions of matter described as urea (multi)-urethane (meth)acrylate-silanes having the general formula RA—NH—C(O)—N(R4)—R11—[O—C(O)NH—RS]n, or RS—NH—C(O)—N(R4)—R11—[O—C(O)NH—RA]n. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-urethane (meth)acrylate-silane precursor compound. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making such urea (multi)-urethane (meth)acrylate-silane precursor compounds, and their use in composite films and electronic devices are also described.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: December 7, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Patent number: 11174361
    Abstract: Compositions of matter described as urea (multi)-urethane (meth)acrylate-silanes having the general formula RA—NH—C(O)—N(R4)—R11—[O—C(O)NH—RS]n, or RS—NH—C(O)—N(R4)—R11—[O—C(O)NH—RA]n. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-urethane (meth)acrylate-silane precursor compound. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making such urea (multi)-urethane (meth)acrylate-silane precursor compounds, and their use in composite films and electronic devices are also described.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: November 16, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Publication number: 20210268782
    Abstract: A composite article includes a multilayer barrier assembly bonded to a substrate, and a top polymer layer bonded to the multilayer barrier assembly opposite the substrate. The multilayer barrier assembly comprises a base polymer layer and a base inorganic barrier layer. The base polymer layer comprises a polymerized reaction product of polymerizable components comprising at least one di(meth)acrylate represented by the formula Each R1 independently represents H or methyl; each R2 independently represents an alkyl group having from 1 to 4 carbon atoms; x=0, 1, 2, 3, or 4; and z=0, 1, 2, 3, or 4, with the provisos that at least one of x and z is not zero and 1?x+z?4. Methods of making the same are also disclosed.
    Type: Application
    Filed: April 16, 2021
    Publication date: September 2, 2021
    Inventors: Robert S. Clough, Joseph C. Spagnola, Christopher S. Lyons, Mark D. Weigel, Thomas P. Klun
  • Patent number: 10947618
    Abstract: A barrier film including a substrate; a base polymer layer adjacent to the substrate; an oxide layer adjacent to the base polymer layer; a adhesion-modifying layer adjacent to the oxide layer; and a top coat polymer layer adjacent to the adhesion-modifying layer. An optional inorganic layer can be applied over the top coat polymer layer. The inclusion of a adhesion-modifying layer provides for enhanced resistance to moisture and improved peel strength adhesion of the top coat polymer layer to the underlying barrier stack layers.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: March 16, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Joseph C. Spagnola, Mark A. Roehrig, Thomas P. Klun, Alan K. Nachtigal, Christopher S. Lyons, Guy D. Joly
  • Publication number: 20200362190
    Abstract: Urea (multi)-(meth)acrylate (multi)-silane precursor compounds, synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds, either neat or in a solvent, and optionally with a catalyst, such as a tin compound, to accelerate the reaction. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-(meth)acrylate (multi)-silane precursor compound synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Patent number: 10804419
    Abstract: Encapsulated device including a photovoltaic cell and a composite film overlaying at least a portion of the photovoltaic cell, the composite film further including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer, and a protective (co)polymer layer derived from a silane precursor compound on the oxide layer.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: October 13, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly
  • Patent number: 10784455
    Abstract: A barrier film including a substrate, a base (co)polymer layer applied on a major surface of the substrate, an oxide layer applied on the base (co)polymer layer, and a protective (co)polymer layer applied on the oxide layer. The protective (co)polymer layer is formed as the reaction product of a first (meth)acryloyl compound and a (meth)acryl-silane compound derived from a Michael reaction between a second (meth)acryloyl compound and an aminosilane. The first and second (meth)acryloyl compounds may be the same. In some embodiments, a multiplicity of alternating layers of the oxide layer and the protective (co)polymer layer may be used. An oxide layer can be applied over the top protective (co)polymer layer. The barrier films provide, in some embodiments, enhanced resistance to moisture and improved peel strength adhesion of the protective (co)polymer layer(s) to the underlying layers. A process of making, and methods of using the barrier film are also described.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: September 22, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Thomas P. Klun, Suresh Iyer, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig
  • Patent number: 10774236
    Abstract: Urea (multi)-(meth)acrylate (multi)-silane precursor compounds, synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds, either neat or in a solvent, and optionally with a catalyst, such as a tin compound, to accelerate the reaction. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-(meth)acrylate (multi)-silane precursor compound synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: September 15, 2020
    Assignee: 3M INNOVATIVE PROPERTIES, COMPANY
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Patent number: 10654251
    Abstract: Barrier assemblies including ultrathin barrier laminates and methods of making the barrier assemblies are provided. A barrier assembly includes a thermoplastic polymer skin layer having opposite first and second major surfaces, and a barrier stack coated on the first major surface of the thermoplastic polymer skin layer to form an integral protective layer having a thickness no greater than about 0.5 mil (about 12.7 microns). The removable carrier film has a major surface releasably attached to the second major surface of the thermoplastic polymer skin layer. In some cases, the removal of the carrier film results in ultrathin barrier laminates.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: May 19, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: David J. Rowe, Ta-Hua Yu, Timothy J. Lindquist, Mark A. Roehrig, Christopher S. Lyons, Stephen P. Maki, Scott J. Jones, Kevin D. Hagen, Andrew M. Mevissen, Kenneth L. Looney, Stephen A. Johnson, Terence D. Neavin, Joseph C. Spagnola, Fred B. McCormick
  • Patent number: 10636920
    Abstract: A barrier film that includes a substrate, a first polymer layer on a major surface of the substrate, an oxide layer on the first polymer layer, and a second polymer layer on the oxide layer. At least one of the first or second polymer layers includes a siloxane reaction product of a secondary or tertiary amino-functional silane having at least two silane groups. A method of making the barrier film and articles and a barrier assembly including the barrier film are also disclosed.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: April 28, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Joseph C. Spagnola, Mark A. Roehrig, Thomas P. Klun, Alan K. Nachtigal, Jennifer K. Schnobrich, Guy D. Joly
  • Publication number: 20200115586
    Abstract: Compositions of matter described as urea (multi)-urethane (meth)acrylate-silanes having the general formula RA—NH—C(O)—N(R4)—R11—[O—C(O)NH—RS]n, or RS—NH—C(O)—N(R4)—R11—[O—C(O)NH—RA]n. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-urethane (meth)acrylate-silane precursor compound. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making such urea (multi)-urethane (meth)acrylate-silane precursor compounds, and their use in composite films and electronic devices are also described.
    Type: Application
    Filed: December 6, 2019
    Publication date: April 16, 2020
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Publication number: 20200109309
    Abstract: Compositions of matter described as urea (multi)-urethane (meth)acrylate-silanes having the general formula RA—NH—C(O)—N(R4)—R11—[O—C(O)NH—Rs]n, or RS—NH—C(O)—N(R4)—R11—[O—C(O)NH—RA]n. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-urethane (meth)acrylate-silane precursor compound. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making such urea (multi)-urethane (meth)acrylate-silane precursor compounds, and their use in composite films and electronic devices are also described.
    Type: Application
    Filed: December 5, 2019
    Publication date: April 9, 2020
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Patent number: 10533111
    Abstract: Compositions of matter described as urea (multi)-urethane (meth)acrylate-silanes having the general formula RA—NH—C(O)—N(R4)—R11—[O—C(O)NH—RS]n, or RS—NH—C(O)—N(R4)—R11—[O—C(O)NH—RA]n. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-urethane (meth)acrylate-silane precursor compound. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making such urea (multi)-urethane (meth)acrylate-silane precursor compounds, and their use in composite films and electronic devices are also described.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: January 14, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons