Patents by Inventor Joseph C. Spagnola

Joseph C. Spagnola has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150344504
    Abstract: Diurethane (meth)acrylate-silane precursor compounds prepared by reacting a primary or secondary aminosilane with a cyclic carbonate to yield a hydroxylalkylene-carbamoylalkylene-alkoxysilanes (referred to as a “hydroxylcarbamoylsilane”), which is reacted with a (meth)acrylated material having isocyanate functionality, either neat or in solvent, and optionally with a catalyst, such as a tin compound. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one diurethane (meth)acrylate-silane precursor compound. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof.
    Type: Application
    Filed: March 1, 2013
    Publication date: December 3, 2015
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Publication number: 20150243816
    Abstract: The present disclosure generally relates to methods of forming barrier assemblies. Some embodiments include application and removal of a protective layer followed by application of a topsheet. Some embodiments include application and removal of a protective layer including a release agent and a monomer.
    Type: Application
    Filed: August 15, 2013
    Publication date: August 27, 2015
    Inventors: Aan K. Nachtigal, Andrew T. Ruff, Christopher S. Lyons, Guy D. Joly, Joseph C. Spagnola, Mark D. Weigel, Michael D. Delmore, Samuel Kidane, Thomas P. Lun
  • Publication number: 20150221797
    Abstract: Encapsulated device including a photovoltaic cell and a composite film overlaying at least a portion of the photovoltaic cell, the composite film further including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer, and a protective (co)polymer layer derived from a silane precursor compound on the oxide layer
    Type: Application
    Filed: March 1, 2013
    Publication date: August 6, 2015
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly
  • Publication number: 20150218294
    Abstract: Urea (multi)-(meth)acrylate (multi)-silane precursor compounds, synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds, either neat or in a solvent, and optionally with a catalyst, such as a tin compound, to accelerate the reaction. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi) (meth)acrylate (multi)-silane precursor compound synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof.
    Type: Application
    Filed: March 1, 2013
    Publication date: August 6, 2015
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Publication number: 20150213990
    Abstract: A barrier film including a substrate; a base polymer layer adjacent to the substrate; an oxide layer adjacent to the base polymer layer; a adhesion-modifying layer adjacent to the oxide layer; and a top coat polymer layer adjacent to the adhesion-modifying layer. An optional inorganic layer can be applied over the top coat polymer layer. The inclusion of a adhesion-modifying layer provides for enhanced resistance to moisture and improved peel strength adhesion of the top coat polymer layer to the underlying barrier stack layers.
    Type: Application
    Filed: July 30, 2013
    Publication date: July 30, 2015
    Inventors: Joseph C. Spagnola, Mark A. Roehrig, Thomas P. Klun, Alan K. Nachtigal, Christopher S. Lyons, Guy D. Joly
  • Publication number: 20150214405
    Abstract: The present disclosure generally relates to methods of forming barrier assemblies. Some embodiments include application of an adhesive layer and/or a topsheet to protect the exposed uppermost layer of the barrier stack during roll-to-roll processing. Some embodiments include application of an adhesive layer and/or a topsheet before the exposed, uppermost layer of the barrier film contacts a solid surface or processing roll. Inclusion of an adhesive layer and/or a topsheet protects the oxide layer during processing, which creates an excellent barrier assembly that can be manufactured using roll-to-roll processing.
    Type: Application
    Filed: August 15, 2013
    Publication date: July 30, 2015
    Inventors: Alan K. Nachtigal, Andrew T. Ruff, Christopher S. Lyons, Guy D. Joly, Joseph C. Spagnola, Mark D. Weigel, Michael D. Delmore, Samuel Kidane, Thomas P. Klun
  • Publication number: 20150203708
    Abstract: Urethane (multi)-(meth)acrylate (multi)-silane compositions, and articles including a (co)polymer reaction product of at least one urethane (multi)-(meth)acrylate (multi)-silane precursor compound. The disclosure also articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urethane (multi) (meth)acrylate (multi)-silane precursor compound. The substrate may be a (co)polymeric film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making urethane (multi)-(meth)acrylate (multi)-silane precursor compounds and their use in composite multilayer barrier films are also described.
    Type: Application
    Filed: March 1, 2013
    Publication date: July 23, 2015
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Publication number: 20150203707
    Abstract: Compositions of matter described as urea (multi)-urethane (meth)acrylate-silanes having the general formula RA—NH—C(O)—N(R4)—R11—[O—C(O)NH—RS]n, or RS—NH—C(O)—N(R4)—R11—[O—C(O)NH—RA]n. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi) urethane(meth)acrylate-silane precursor compound. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making such urea (multi)-urethane(meth)acrylate-silane precursor compounds, and their use in composite films and electronic devices are also described.
    Type: Application
    Filed: March 1, 2013
    Publication date: July 23, 2015
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Publication number: 20150194541
    Abstract: A barrier film that includes a substrate, a first polymer layer on a major surface of the substrate, an oxide layer on the first polymer layer, and a second polymer layer on the oxide layer. At least one of the first or second polymer layers includes a siloxane reaction product of a secondary or tertiary amino-functional silane having at least two silane groups. A method of making the barrier film and articles and a barrier assembly including the barrier film are also disclosed.
    Type: Application
    Filed: August 8, 2013
    Publication date: July 9, 2015
    Inventors: Joseph C. Spagnola, Mark A. Roehrig, Thomas P. Klun, Alan K. Nachtigal, Jennifer K. Schnobrich, Guy D. Joly
  • Publication number: 20130323519
    Abstract: A barrier film including a substrate, a base (co)polymer layer applied on a major surface of the substrate, an oxide layer applied on the base (co)polymer layer, and a protective (co)polymer layer applied on the oxide layer. The protective (co)polymer layer is formed as the reaction product of a first (meth)acryloyl compound and a (meth)acryl-silane compound derived from a Michael reaction between a second (meth)acryloyl compound and an aminosilane. The first and second (meth)acryloyl compounds may be the same. In some embodiments, a multiplicity of alternating layers of the oxide layer and the protective (co)polymer layer may be used. An oxide layer can be applied over the top protective (co)polymer layer. The barrier films provide, in some embodiments, enhanced resistance to moisture and improved peel strength adhesion of the protective (co)polymer layer(s) to the underlying layers. A process of making, and methods of using the barrier film are also described.
    Type: Application
    Filed: August 7, 2013
    Publication date: December 5, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Thomas P. Klun, Suresh Iyer, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig
  • Publication number: 20090137043
    Abstract: The present subject matter relates to the modification of fibers by the growth of films by the Atomic Layer Epitaxy (ALE) process, which is also commonly referred to as Atomic Layer Deposition (ALD). The presently disclosed subject matter relates in particular to a process for the modification of the surface and bulk properties of fiber and textile media, including synthetic polymeric and natural fibers and yarns in woven, knit, and nonwoven form by low-temperature ALD.
    Type: Application
    Filed: November 25, 2008
    Publication date: May 28, 2009
    Inventors: Gregory N. Parsons, Gary Kevin Hyde, Joseph C. Spagnola, Qing Peng