Patents by Inventor Joseph C. Spagnola

Joseph C. Spagnola has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10450332
    Abstract: Compounds having hindered amine and oxyalkyl amine light stabilizers can mitigate the adverse effects of actinic radiation, such as visible and ultraviolet light, in particular on substrates such as glass or ceramic substrates. Polymers derived from such compounds. Nanoparticles, substrates, such as glass or ceramic substrates, or both nanoparticles and substrates, having such compounds affixed thereto. Articles containing at least one of such polymers, nanoparticles, substrates, or compounds.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: October 22, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Klun, Mark A. Roehrig, Joseph C. Spagnola, Alan K. Nachtigal, Charles J. Hoy, Richard J. Pokorny, William J. Hunt, Jason T. Petrin, Paul B. Armstrong, Suresh S. Iyer
  • Publication number: 20190180968
    Abstract: A barrier film including a substrate; a base polymer layer adjacent to the substrate; an oxide layer adjacent to the base polymer layer; a adhesion-modifying layer adjacent to the oxide layer; and a top coat polymer layer adjacent to the adhesion-modifying layer. An optional inorganic layer can be applied over the top coat polymer layer. The inclusion of a adhesion-modifying layer provides for enhanced resistance to moisture and improved peel strength adhesion of the top coat polymer layer to the underlying barrier stack layers.
    Type: Application
    Filed: February 4, 2019
    Publication date: June 13, 2019
    Inventors: JOSEPH C. SPAGNOLA, MARK A. ROEHRIG, THOMAS P. KLUN, ALAN K. NACHTIGAL, CHRISTOPHER S. LYONS, GUY D. JOLY
  • Publication number: 20190112711
    Abstract: A method is provided. The method may include engaging a first edge region on a first surface of a substrate with a first support roller; engaging a second edge region on the first surface of the substrate with a second support roller; transporting the substrate over the first and the second support rollers; repeating the following sequence of steps to form a thin film on the substrate: (a) exposing the substrate to a first precursor; (b) supplying a reactive species to the substrate after exposing the substrate to the first precursor; and depositing a vapor on the thin film to form a coating on the thin film.
    Type: Application
    Filed: March 24, 2017
    Publication date: April 18, 2019
    Inventors: Christopher S. Lyons, Bill H. Dodge, Joseph C. Spagnola, Glen A. Jerry, Ameeta R. Goyal, Ronald P. Swanson, James N. Dobbs
  • Publication number: 20180370200
    Abstract: Barrier assemblies including ultrathin barrier laminates and methods of making the barrier assemblies are provided. A barrier assembly includes a thermoplastic polymer skin layer having opposite first and second major surfaces, and a barrier stack coated on the first major surface of the thermoplastic polymer skin layer to form an integral protective layer having a thickness no greater than about 0.5 mil (about 12.7 microns). The removable carrier film has a major surface releasably attached to the second major surface of the thermoplastic polymer skin layer. In some cases, the removal of the carrier film results in ultrathin barrier laminates.
    Type: Application
    Filed: June 24, 2016
    Publication date: December 27, 2018
    Inventors: David J. Rowe, Ta-Hua Yu, Timothy J. Lindquist, Mark A. Roehrig, Christopher S. Lyons, Stephen P. Maki, Scott J. Jones, Kevin D. Hagen, Andrew M. Mevissen, Kenneth L. Looney, Stephen A. Johnson, Terence D. Neavin, Joseph C. Spagnola, Fred B. McCormick
  • Publication number: 20180362553
    Abstract: Compounds having hindered amine and oxyalkyl amine light stabilizers can mitigate the adverse effects of actinic radiation, such as visible and ultraviolet light, in particular on substrates such as glass or ceramic substrates. Polymers derived from such compounds. Nanoparticles, substrates, such as glass or ceramic substrates, or both nanoparticles and substrates, having such compounds affixed thereto. Articles containing at least one of such polymers, nanoparticles, substrates, or compounds.
    Type: Application
    Filed: August 28, 2018
    Publication date: December 20, 2018
    Inventors: Thomas P. Klun, Mark A. Roehrig, Joseph C. Spagnola, Alan K. Nachtigal, Charles J. Hoy, Richard J. Pokorny, William J. Hunt, Jason T. Petrin, Paul B. Armstrong, Suresh S. Iyer
  • Publication number: 20180244881
    Abstract: A composite article includes a multilayer barrier assembly bonded to a substrate, and a top polymer layer bonded to the multilayer barrier assembly opposite the substrate. The multilayer barrier assembly comprises a base polymer layer, and a base inorganic barrier layer. The base polymer layer comprises a polymerized reaction product of polymerizable components comprising at least one di(meth)acrylate represented by the formula. Each R1 independently represents H or methyl; R2 and R3 independently represent an alkyl group having from 1 to 4 carbon atoms or R2 and R3 may together form an alkylene group having from 2 to 7 carbon atoms; and R4 represents an alkyl group having from 1 to 12 carbon atoms. Methods of making the same are also disclosed.
    Type: Application
    Filed: August 18, 2016
    Publication date: August 30, 2018
    Inventors: Robert S. Clough, Joseph C. Spagnola, Christopher S. Lyons, Mark D. Weigel, Thomas P. Klun
  • Publication number: 20180236756
    Abstract: A composite article includes a multilayer barrier assembly bonded to a substrate, and a top polymer layer bonded to the multilayer barrier assembly opposite the substrate. The multilayer barrier assembly comprises a base polymer layer and a base inorganic barrier layer. The base polymer layer comprises a polymerized reaction product of polymerizable components comprising at least one di(meth)acrylate represented by the formula: Formula (I) Each R1 independently represents H or methyl; each R2 independently represents an alkyl group having from 1 to 4 carbon atoms; x=0, 1, 2, 3, or 4; and z=0, 1, 2, 3, or 4, with the provisos that at least one of x and z is not zero and 1?x+z?4. Methods of making the same are also disclosed.
    Type: Application
    Filed: August 18, 2016
    Publication date: August 23, 2018
    Inventors: Robert S. Clough, Joseph C. Spagnola, Christopher S. Lyons, Mark D. Weigel, Thomas P. Klun
  • Publication number: 20180236755
    Abstract: A composite article comprises a substrate, base polymer layer, an inorganic barrier layer, and top polymer layer. The base polymer layer is disposed on the substrate, and includes a polymerized reaction product of components comprising at least 60 percent by weight of at least one di(meth)acrylate represented by the formula wherein: each R1 is independently H or methyl; and each R2 independently represents an alkyl group having from 1 to 4 carbon atoms, or two R2 groups may together form an alkylene group having from 2 to 7 carbon atoms. An inorganic barrier layer is bonded to the base polymer layer. The top polymer layer is disposed on the inorganic barrier layer opposite the substrate, wherein the top polymer layer comprises a polymerized reaction product of components comprising at least 60 percent by weight of a cycloaliphatic (meth)acrylate having from 13 to 24 carbon atoms.
    Type: Application
    Filed: August 18, 2016
    Publication date: August 23, 2018
    Inventors: Robert S. Clough, Joseph C. Spagnola, Christopher S. Lyons, Mark D. Weigel, Thomas P. Klun
  • Publication number: 20180230325
    Abstract: Urea (multi)-(meth)acrylate (multi)-silane precursor compounds, synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds, either neat or in a solvent, and optionally with a catalyst, such as a tin compound, to accelerate the reaction. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-(meth)acrylate (multi)-silane precursor compound synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof.
    Type: Application
    Filed: April 17, 2018
    Publication date: August 16, 2018
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Patent number: 10011735
    Abstract: Diurethane (meth)acrylate-silane precursor compounds prepared by reacting a primary or secondary aminosilane with a cyclic carbonate to yield a hydroxylalkylene-carbamoylalkylene-alkoxysilanes (referred to as a “hydroxylcarbamoylsilane”), which is reacted with a (meth)acrylated material having isocyanate functionality, either neat or in solvent, and optionally with a catalyst, such as a tin compound. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one diurethane (meth)acrylate-silane precursor compound. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: July 3, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANIES
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Patent number: 10000626
    Abstract: The present disclosure relates to sterically hindered alkyl amine and sterically hindered oxyalkyl amine compounds, as well as particles, substrates, coatings, and articles including the same.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: June 19, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Thomas P. Klun, Mark A. Roehrig, Joseph C. Spagnola, Alan K. Nachtigal, Charles J. Hoy, Richard J. Pokorny, William J. Hunt, Jason T. Petrin, Paul B. Armstrong, Suresh S. Iyer
  • Patent number: 9982160
    Abstract: Urea (multi)-(meth)acrylate (multi)-silane precursor compounds, synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds, either neat or in a solvent, and optionally with a catalyst, such as a tin compound, to accelerate the reaction. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi) (meth)acrylate (multi)-silane precursor compound synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: May 29, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Publication number: 20180138433
    Abstract: A barrier film including a substrate, a base (co)polymer layer applied on a major surface of the substrate, an oxide layer applied on the base (co)polymer layer, and a protective (co)polymer layer applied on the oxide layer. The protective (co)polymer layer is formed as the reaction product of a first (meth)acryloyl compound and a (meth)acryl-silane compound derived from a Michael reaction between a second (meth)acryloyl compound and an aminosilane. The first and second (meth)acryloyl compounds may be the same. In some embodiments, a multiplicity of alternating layers of the oxide layer and the protective (co)polymer layer may be used. An oxide layer can be applied over the top protective (co)polymer layer. The barrier films provide, in some embodiments, enhanced resistance to moisture and improved peel strength adhesion of the protective (co)polymer layer(s) to the underlying layers. A process of making, and methods of using the barrier film are also described.
    Type: Application
    Filed: January 15, 2018
    Publication date: May 17, 2018
    Inventors: Thomas P. Klun, Suresh Iyer, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig
  • Publication number: 20180134912
    Abstract: Compositions of matter described as urea (multi)-urethane (meth)acrylate-silanes having the general formula RA—NH—C(O)—N(R4)—R11—[O—C(O)NH—RS]n, or RS—NH—C(O)—N(R4)—R11—[O—C(O)NH—RA]n. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-urethane (meth)acrylate-silane precursor compound. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making such urea (multi)-urethane (meth)acrylate-silane precursor compounds, and their use in composite films and electronic devices are also described.
    Type: Application
    Filed: January 15, 2018
    Publication date: May 17, 2018
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Publication number: 20180138339
    Abstract: Encapsulated device including a photovoltaic cell and a composite film overlaying at least a portion of the photovoltaic cell, the composite film further including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer, and a protective (co)polymer layer derived from a silane precursor compound on the oxide layer
    Type: Application
    Filed: January 15, 2018
    Publication date: May 17, 2018
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly
  • Publication number: 20180002285
    Abstract: Compounds having hindered amine and oxyalkyl amine light stabilizers can mitigate the adverse effects of actinic radiation, such as visible and ultraviolet light, on polymers and copolymers. Polymers and copolymers derived from such compounds. Articles, such as coated articles and molded articles, containing such polymers or compounds.
    Type: Application
    Filed: December 14, 2015
    Publication date: January 4, 2018
    Inventors: Thomas P. Klun, Mark A. Roehrig, Joseph C. Spagnola, Alan K. Nachtigal, Charles J. Hoy, Richard J. Pokorny, William J. Hunt, Jason T. Petrin, Paul B. Armstrong, Suresh Iyer
  • Publication number: 20170355833
    Abstract: The present disclosure relates to sterically hindered alkyl amine and sterically hindered oxyalkyl amine compounds, as well as particles, substrates, coatings, and articles including the same.
    Type: Application
    Filed: December 14, 2015
    Publication date: December 14, 2017
    Inventors: Thomas P. Klun, Mark A. Roehrig, Joseph C. Spagnola, Alan K. Nachtigal, Charles J. Hoy, Richard J. Pokorny, William J. Hunt, Jason T. Petrin, Paul B. Armstrong, Suresh S. Iyer
  • Publication number: 20170305855
    Abstract: Compounds having hindered amine and oxyalkyl amine light stabilizers can mitigate the adverse effects of actinic radiation, such as visible and ultraviolet light, on polymers and copolymers. Polymers and copolymers derived from such compounds. Articles, such as coated articles and molded articles, containing such polymers or compounds.
    Type: Application
    Filed: December 11, 2015
    Publication date: October 26, 2017
    Inventors: Thomas P. Klun, Mark A. Roehrig, Joseph C. Spagnola, Alan K. Nachtigal, Charles J. Hoy, Richard J. Pokorny, William J. Hunt, Jason T. Petrin, Paul B. Armstrong, Suresh S. Iyer
  • Patent number: 9790396
    Abstract: Urethane (multi)-(meth)acrylate (multi)-silane compositions, and articles including a (co)polymer reaction product of at least one urethane (multi)-(meth)acrylate (multi)-silane precursor compound. The disclosure also articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urethane (multi) (meth)acrylate (multi)-silane precursor compound. The substrate may be a (co)polymeric film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making urethane (multi)-(meth)acrylate (multi)-silane precursor compounds and their use in composite multilayer barrier films are also described.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: October 17, 2017
    Assignee: 3M INNOVATION PROPERTIES COMPANY
    Inventors: Thomas P. Klun, Alan K. Nachtigal, Joseph C. Spagnola, Mark A. Roehrig, Jennifer K. Schnobrich, Guy D. Joly, Christopher S. Lyons
  • Publication number: 20170283444
    Abstract: Compounds having hindered amine and oxyalkyl amine light stabilizers can mitigate the adverse effects of actinic radiation, such as visible and ultraviolet light, in particular on substrates such as glass or ceramic substrates. Polymers derived from such compounds. Nanoparticles, substrates, such as glass or ceramic substrates, or both nanoparticles and substrates, having such compounds affixed thereto. Articles containing at least one of such polymers, nanoparticles, substrates, or compounds.
    Type: Application
    Filed: December 14, 2015
    Publication date: October 5, 2017
    Inventors: Thomas P. Klun, Mark A. Roehrig, Joseph C. Spagnola, Alan K. Nachtigal, Charles J. Hoy, Richard J. Pokorny, William J. Hunt, Jason T. Petrin, Paul B. Armstrong, Suresh S. Iyer