Patents by Inventor Joseph E. Geusic

Joseph E. Geusic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6593656
    Abstract: A method of manufacturing integrated circuits using a thin metal oxide film as a seed layer for building multilevel interconnects structures in integrated circuits. Thin layer metal oxide films are deposited on a wafer, and standard optical lithography is used to expose the metal oxide film in a pattern corresponding to a metal line pattern. The metal oxide film is converted to a layer of metal, and a metal film may then be deposited on the converted oxide film by either selective CVD or electroless plating. Via holes are then fabricated in a similar process using via hole lithography. The process is continued until the desired multilevel structure is fabricated.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: July 15, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Joseph E. Geusic
  • Patent number: 6582512
    Abstract: A method of forming a periodic index of refraction pattern in a superlattice of a solid material to achieve photonic bandgap effects at desired optical wavelengths is disclosed. A plurality of space group symmetries, including a plurality of empty-spaced buried patterns, are formed by drilling holes in the solid material and annealing the solid material to form empty-spaced patterns of various geometries. The empty-spaced patterns may have various sizes and may be formed at different periodicities, so that various photonic band structures can be produced for wavelength regions of interest.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: June 24, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Joseph E. Geusic, Kevin G. Donohoe
  • Publication number: 20030111665
    Abstract: A method of forming a periodic index of refraction pattern in a superlattice of a solid material to achieve photonic bandgap effects at desired optical wavelengths is disclosed. A plurality of space group symmetries, including a plurality of empty-spaced buried patterns, are formed by drilling holes in the solid material and annealing the solid material to form empty-spaced patterns of various geometries. The empty-spaced patterns may have various sizes and may be formed at different periodicities, so that various photonic band structures can be produced for wavelength regions of interest.
    Type: Application
    Filed: November 26, 2002
    Publication date: June 19, 2003
    Inventors: Joseph E. Geusic, Kevin G. Donohoe
  • Patent number: 6579738
    Abstract: A method of aligning a plurality of empty-spaced buried patterns formed in semiconductor monocrystalline substrates is disclosed. In an exemplary embodiment, high-temperature metal marks are formed to include a conductive material having a melting temperature higher than an annealing temperature used to form such empty-spaced buried patterns. The high-temperature metal marks are formed prior to the formation of the empty-spaced buried patterns formed in a monocrystalline substrate, so that the empty-space buried patterns are aligned to the marks. Subsequent semiconductor structures that are formed as part of desired semiconductor devices can be also aligned to the marks.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: June 17, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Paul A. Farrar, Joseph E. Geusic
  • Patent number: 6579803
    Abstract: An apparatus and a method for photoreducing copper oxide layers from semiconductor wafers during the processes of forming interconnects in advanced IC manufacturing. The apparatus comprises a reaction chamber with a high intensity UV light source and a wafer holder in the chamber. The UV light source is made of arrays of microdischarge devices fabricated on a semiconductor wafer where each of the microdischarge devices has the structure of a hollow cathode. Multiple arrays of microdischarge devices can be assembled together to make a planar UV lamp so as to provide a sufficient area for the UV illumination. The wafer holder in the chamber is made rotatable for a better uniformity during the photoreduction process. A non-oxidizing gas is flowed into the chamber to prevent instant and subsequent oxidation on the copper surface.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: June 17, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Joseph E. Geusic, Alan R. Reinberg
  • Publication number: 20030067041
    Abstract: A method for textured surfaces in non volatile floating gate tunneling oxide (FLOTOX) devices, e.g. FLOTOX transistors, are provided. The present invention capitalizes on using “self-structured masks” and a controlled etch to form nanometer scale microtip arrays in the textured surfaces. The new method produces significantly larger tunneling currents for a given voltage than attained in prior work. The new method is advantageously suited for the much higher density, non volatile FLOTOX transistors desired for use in flash memories and in electronically erasable and programmable read only memories (EEPROMs). These FLOTOX transistors are candidates for replacing the low power operation transistors found in DRAMs.
    Type: Application
    Filed: November 1, 2002
    Publication date: April 10, 2003
    Applicant: Micron Technology, Inc.
    Inventors: Joseph E. Geusic, Leonard Forbes
  • Patent number: 6545314
    Abstract: A memory cell provides point defect trap sites in an insulator for storing data charges. Single electrons are stored on respective point defect trap sites and a resulting parameter, such as transistor drain current, is detected. By adjusting the density of the point defect trap sites, more uniform step changes in drain current are obtained as single electrons are stored on or removed from respective trap sites. By also adjusting the trapping energy of the point defect trap sites, the memory cell provides either volatile data storage, similar to a dynamic random access memory (DRAM), or nonvolatile data storage, similar to an electrically erasable and programmable read only memory (EEPROM). The memory cell is used for storing binary or multi-state data.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: April 8, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Joseph E. Geusic
  • Publication number: 20030042627
    Abstract: A method of aligning a plurality of empty-spaced buried patterns formed in semiconductor monocrystalline substrates is disclosed. In an exemplary embodiment, high-temperature metal marks are formed to include a conductive material having a melting temperature higher than an annealing temperature used to form such empty-spaced buried patterns. The high-temperature metal marks are formed prior to the formation of the empty-spaced buried patterns formed in a monocrystalline substrate, so that the empty-space buried patterns are aligned to the marks. Subsequent semiconductor structures that are formed as part of desired semiconductor devices can be also aligned to the marks.
    Type: Application
    Filed: October 22, 2002
    Publication date: March 6, 2003
    Inventors: Paul A. Farrar, Joseph E. Geusic
  • Patent number: 6526191
    Abstract: An integrated circuit with a number of optical fibers that are formed in high aspect ratio holes. The high aspect ratio holes extend through a semiconductor wafer. The optical fibers include a cladding layer and a core formed in the high aspect ratio hole. These optical fibers are used to transmit signals between functional circuits on the semiconductor wafer and functional circuits on the back of the wafer or beneath the wafer.
    Type: Grant
    Filed: August 21, 2000
    Date of Patent: February 25, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Joseph E. Geusic, Kie Y. Ahn, Leonard Forbes
  • Patent number: 6518615
    Abstract: A method and structure for high capacitance memory cells is provided. The method includes forming a trench capacitor in a semiconductor substrate. A self-structured mask is formed on the interior surface of the trench. The interior surface of the trench is etched to form an array of silicon pillars. The self-structured mask is removed. Then an insulator layer is formed on the array of silicon pillars. A polycrystalline semiconductor plate extends outwardly from the insulator layer in the trench.
    Type: Grant
    Filed: August 20, 1998
    Date of Patent: February 11, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Joseph E. Geusic, Leonard Forbes, Kie Y. Ahn
  • Publication number: 20030001191
    Abstract: A floating gate transistor has a reduced barrier energy at an interface with an adjacent gate insulator, allowing faster charge transfer across the gate insulator at lower voltages. Data is stored as charge on the floating gate. The data charge retention time on the floating gate is reduced. The data stored on the floating gate is dynamically refreshed. The floating gate transistor provides a dense and planar dynamic electrically alterable and programmable read only memory (DEAPROM) cell adapted for uses such as for a dynamic random access memory (DRAM) or a dynamically refreshed flash EEPROM memory. The floating gate transistor provides a high gain memory cell and low voltage operation.
    Type: Application
    Filed: August 29, 2002
    Publication date: January 2, 2003
    Applicant: Micron Technology, Inc.
    Inventors: Leonard Forbes, Joseph E. Geusic
  • Patent number: 6496370
    Abstract: An electronic assembly is provided. The electronic assembly includes a semiconductor interposer having first and second surfaces. The semiconductor interposer also has cooling channels passing through the interposer between the first and second surfaces. The electronic assembly has at least one semiconductor chip disposed outwardly from the first surface of the semiconductor interposer and at least one semiconductor chip disposed outwardly from the second surface of the semiconductor interposer. The electronic assembly also has a number of electrical connections through the semiconductor interposer wherein the number of electrical connections couple the semiconductor chips disposed outwardly from the first and second surfaces of the semiconductor interposer.
    Type: Grant
    Filed: April 17, 2001
    Date of Patent: December 17, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Joseph E. Geusic, Leonard Forbes, Kie Y. Ahn
  • Publication number: 20020175330
    Abstract: A method of forming a periodic index of refraction pattern in a superlattice of a solid material to achieve photonic bandgap effects at desired optical wavelengths is disclosed. A plurality of space group symmetries, including a plurality of empty-spaced buried patterns, are formed by drilling holes in the solid material and annealing the solid material to form empty-spaced patterns of various geometries. The empty-spaced patterns may have various sizes and may be formed at different periodicities, so that various photonic band structures can be produced for wavelength regions of interest.
    Type: Application
    Filed: May 22, 2001
    Publication date: November 28, 2002
    Inventors: Joseph E. Geusic, Kevin G. Donohoe
  • Patent number: 6476441
    Abstract: A method and structure for textured surfaces in non volatile floating gate tunneling oxide (FLOTOX) devices, e.g. FLOTOX transistors, are provided. The present invention capitalizes on using “self-structured masks” and a controlled etch to form nanometer scale microtip arrays in the textured surfaces. The microtips in the array of microtips have a more uniform size and shape and higher density (˜1012/cm2) at the substrate/tunnel oxide (Si/SiO2) interface than in current generation FLOTOX transistors. This higher density is four orders of magnitude greater than that which has been in use with FLOTOX transistor technology. In result, the new method and structure produce significantly larger tunneling currents for a given voltage than attained in prior work. The new method and structure are advantageously suited for the much higher density, non volatile FLOTOX transistors desired for use in flash memories and in electronically erasable and programmable read only memories (EEPROMs).
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: November 5, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Joseph E. Geusic, Leonard Forbes
  • Patent number: 6456535
    Abstract: Structures and methods involving n-channel flash memories with an ultrathin tunnel oxide thickness, have been provided. Both the write and erase operations are performed by tunneling. According to the teachings of the present invention, the n-channel flash memory cell with thin tunnel oxides will operate on a dynamic basis. The stored data can be refreshed every few seconds as necessary. However, the write and erase operations will however now be orders of magnitude faster than traditional n-channel flash memory and the cell provides a large gain. The present invention further provides structures and methods for n-channel floating gate transistors which avoid n-channel threshold voltage shifts and achieve source side tunneling erase. The n-channel memory cell structure includes a floating gate separated from a channel region by an oxide layer of less than 50 Angstroms (Å).
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: September 24, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Luan C. Tran, Alan R. Reinberg, Joseph E. Geusic, Kie Y. Ahn, Paul A. Farrar, Eugene H. Cloud, David J. McElroy
  • Patent number: 6451685
    Abstract: A method of manufacturing integrated circuits using a thin metal oxide film as a seed layer for building multilevel interconnects structures in integrated circuits. Thin layer metal oxide films are deposited on a wafer, and standard optical lithography is used to expose the metal oxide film in a pattern corresponding to a metal line pattern. The metal oxide film is converted to a layer of metal, and a metal film may then be deposited on the converted oxide film by either selective CVD or electroless plating. Via holes are then fabricated in a similar process using via hole lithography. The process is continued until the desired multilevel structure is fabricated.
    Type: Grant
    Filed: February 5, 2001
    Date of Patent: September 17, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Joseph E. Geusic
  • Publication number: 20020127835
    Abstract: An integrated circuit and method for forming the same. The integrated circuit includes a semiconductor wafer with first and second surfaces. A functional circuit is formed on the first surface of the semiconductor wafer. Further, a metallization layer is formed outwardly from the first surface of the semiconductor wafer. The integrated circuit also includes at least one high aspect ratio via that extends through the layer of semiconductor material. This via provides a connection between a lead and the functional circuit.
    Type: Application
    Filed: March 6, 2001
    Publication date: September 12, 2002
    Applicant: Micron Technology, Inc.
    Inventors: Joseph E. Geusic, Kie Y. Ahn, Leonard Forbes
  • Publication number: 20020106884
    Abstract: A method of manufacturing integrated circuits using a thin metal oxide film as a seed layer for building multilevel interconnects structures in integrated circuits. Thin layer metal oxide films are deposited on a wafer, and standard optical lithography is used to expose the metal oxide film in a pattern corresponding to a metal line pattern. The metal oxide film is converted to a layer of metal, and a metal film may then be deposited on the converted oxide film by either selective CVD or electroless plating. Via holes are then fabricated in a similar process using via hole lithography. The process is continued until the desired multilevel structure is fabricated.
    Type: Application
    Filed: February 5, 2001
    Publication date: August 8, 2002
    Inventors: Kie Y. Ahn, Joseph E. Geusic
  • Publication number: 20020106890
    Abstract: A method of manufacturing integrated circuits using a thin metal oxide film as a seed layer for building multilevel interconnects structures in integrated circuits. Thin layer metal oxide films are deposited on a wafer, and standard optical lithography is used to expose the metal oxide film in a pattern corresponding to a metal line pattern. The metal oxide film is converted to a layer of metal, and a metal film may then be deposited on the converted oxide film by either selective CVD or electroless plating. Via holes are then fabricated in a similar process using via hole lithography. The process is continued until the desired multilevel structure is fabricated.
    Type: Application
    Filed: January 11, 2002
    Publication date: August 8, 2002
    Inventors: Kie Y. Ahn, Joseph E. Geusic
  • Patent number: 6423613
    Abstract: The present invention includes a method for bonding one semiconductor surface to a second semiconductor surface. The method includes providing a first article that has a semiconductor surface and a second article that has a semiconductor surface. The semiconductor surfaces are annealed with an energy source wherein energy is confined to the semiconductor surfaces. The annealed surfaces are bonded to each other.
    Type: Grant
    Filed: November 10, 1998
    Date of Patent: July 23, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Joseph E. Geusic