Patents by Inventor Joseph F. Ahadian

Joseph F. Ahadian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11533106
    Abstract: Methods and systems for automated health assessment of fiber optic links of a fiber optic communication system are described. Tables are used to describe the fiber optic links, including access addresses to communication modules used in the links. Telemetry data representative of operation of the communication modules can be read via the access addresses into a central station. OTDR/OFDR measurement data of fiber optic segments used in the links can be read via the access addresses into the central station. The telemetry and/or OTDR/OFDR measurement data can be used by the central station for comparison against reference data to assess health of the links. The communication modules locally and continuously capture the telemetry data to detect transient events that may be the result of tampering of the links.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: December 20, 2022
    Assignee: ULTRA COMMUNICATIONS, INC.
    Inventors: Joseph F. Ahadian, Vahid Nazer, Sandra Skendzic, Charles B. Kuznia, Richard J. Weiss
  • Publication number: 20220278746
    Abstract: Methods and systems for automated health assessment of fiber optic links of a fiber optic communication system are described. Tables are used to describe the fiber optic links, including access addresses to communication modules used in the links. Telemetry data representative of operation of the communication modules can be read via the access addresses into a central station. OTDR/OFDR measurement data of fiber optic segments used in the links can be read via the access addresses into the central station. The telemetry and/or OTDR/OFDR measurement data can be used by the central station for comparison against reference data to assess health of the links. The communication modules locally and continuously capture the telemetry data to detect transient events that may be the result of tampering of the links.
    Type: Application
    Filed: May 16, 2022
    Publication date: September 1, 2022
    Inventors: Joseph F. AHADIAN, Vahid NAZER, Sandra SKENDZIC, Charles B. KUZNIA, Richard J. WEISS
  • Patent number: 11368214
    Abstract: Methods and systems for automated health assessment of fiber optic links of a fiber optic communication system are described. Tables are used to describe the fiber optic links, including access addresses to communication modules used in the links. Telemetry data representative of operation of the communication modules can be read via the access addresses into a central station. OTDR/OFDR measurement data of fiber optic segments used in the links can be read via the access addresses into the central station. The telemetry and/or OTDR/OFDR measurement data can be used by the central station for comparison against reference data to assess health of the links. The communication modules locally and continuously capture the telemetry data to detect transient events that may be the result of tampering of the links.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: June 21, 2022
    Assignee: ULTRA COMMUNICATIONS, INC.
    Inventors: Joseph F. Ahadian, Vahid Nazer, Sandra Skendzic, Charles B. Kuznia, Richard J. Weiss
  • Publication number: 20210344417
    Abstract: Methods and systems for automated health assessment of fiber optic links of a fiber optic communication system are described. Tables are used to describe the fiber optic links, including access addresses to communication modules used in the links. Telemetry data representative of operation of the communication modules can be read via the access addresses into a central station. OTDR/OFDR measurement data of fiber optic segments used in the links can be read via the access addresses into the central station. The telemetry and/or OTDR/OFDR measurement data can be used by the central station for comparison against reference data to assess health of the links. The communication modules locally and continuously capture the telemetry data to detect transient events that may be the result of tampering of the links.
    Type: Application
    Filed: May 17, 2021
    Publication date: November 4, 2021
    Inventors: Joseph F. AHADIAN, Vahid NAZER, Sandra SKENDZIC, Charles B. KUZNIA, Richard J. WEISS
  • Patent number: 11018761
    Abstract: Methods and systems for automated health assessment of fiber optic links of a fiber optic communication system are described. Tables are used to describe the fiber optic links, including access addresses to communication modules used in the links. Telemetry data representative of operation of the communication modules can be read via the access addresses into a central station. OTDR/OFDR measurement data of fiber optic segments used in the links can be read via the access addresses into the central station. The telemetry and/or OTDR/OFDR measurement data can be used by the central station for comparison against reference data to assess health of the links. The communication modules locally and continuously capture the telemetry data to detect transient events that may be the result of tampering of the links.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: May 25, 2021
    Assignee: Ultra Communications, Inc.
    Inventors: Joseph F. Ahadian, Vahid Nazer, Sandra Skendzic, Charles B. Kuznia, Richard J. Weiss
  • Publication number: 20200350986
    Abstract: Methods and systems for automated health assessment of fiber optic links of a fiber optic communication system are described. Tables are used to describe the fiber optic links, including access addresses to communication modules used in the links. Telemetry data representative of operation of the communication modules can be read via the access addresses into a central station. OTDR/OFDR measurement data of fiber optic segments used in the links can be read via the access addresses into the central station. The telemetry and/or OTDR/OFDR measurement data can be used by the central station for comparison against reference data to assess health of the links. The communication modules locally and continuously capture the telemetry data to detect transient events that may be the result of tampering of the links.
    Type: Application
    Filed: February 26, 2020
    Publication date: November 5, 2020
    Inventors: Joseph F. Ahadian, Vahid Nazer, Sandra Skendzic, Charles B. Kuznia, Richard J. Weiss
  • Patent number: 10712508
    Abstract: A protective assembly method using a transparent layer within the fiber interconnect system aids in optical coupling by preventing an air gap from forming between the fiber cores within a connector. A thin transparent film (or with adhesive) is placed over the fiber end-faces at the connector interface, the film having characteristics which allows it to conform to the fiber end and minimize coupling loss between fibers. The film is sized to fit connectors faces and can be temporary, being replaced with each installation. A coating can also applied to the connector surface, providing a similar effect, as well as structurally enhancing the connector surfaces.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: July 14, 2020
    Assignee: Ultra Communications, Inc.
    Inventors: Charles B. Kuznia, Richard J. Pommer, Joseph F. Ahadian, Richard T. Hagan, Man W. Wong
  • Publication number: 20190154926
    Abstract: A protective assembly method using a transparent layer within the fiber interconnect system aids in optical coupling by preventing an air gap from forming between the fiber cores within a connector. A thin transparent film (or with adhesive) is placed over the fiber end-faces at the connector interface, the film having characteristics which allows it to conform to the fiber end and minimize coupling loss between fibers. The film is sized to fit connectors faces and can be temporary, being replaced with each installation. A coating can also applied to the connector surface, providing a similar effect, as well as structurally enhancing the connector surfaces.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 23, 2019
    Inventors: Charles B. Kuznia, Richard J. Pommer, Joseph F. Ahadian, Richard T. Hagan, Man W. Wong
  • Patent number: 10234358
    Abstract: An optical time domain reflectometer (OTDR) system with an integrated high speed optical modulator is capable of operating at a speed similar to the OTDR pulse width to improve the measurement resolution and reduce the time required to acquire a high dynamic range OTDR measurement over existing approaches. ASICs can be used to control the modulator and generation of pulses. The high-speed optical modulator enables high resolution single-photon OTDR measurement by blocking out all return light except from the region of fiber under examination.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: March 19, 2019
    Assignee: Ultra Communications, Inc.
    Inventors: Joseph F. Ahadian, Kris Kusumoto, Charles B. Kuznia
  • Patent number: 10162124
    Abstract: A protective assembly method using a transparent layer within the fiber interconnect system aids in optical coupling by preventing an air gap from forming between the fiber cores within a connector. A thin transparent film (or with adhesive) is placed over the fiber end-faces at the connector interface, the film having characteristics which allows it to conform to the fiber end and minimize coupling loss between fibers. The film is sized to fit connectors faces and can be temporary, being replaced with each installation. A coating can also applied to the connector surface, providing a similar effect, as well as structurally enhancing the connector surfaces.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: December 25, 2018
    Assignee: Ultra Communications, Inc.
    Inventors: Charles B. Kuznia, Richard J. Pommer, Joseph F. Ahadian, Richard T. Hagan, Man W. Wong
  • Publication number: 20180340860
    Abstract: An optical time domain reflectometer (OTDR) system with an integrated high speed optical modulator is capable of operating at a speed similar to the OTDR pulse width to improve the measurement resolution and reduce the time required to acquire a high dynamic range OTDR measurement over existing approaches. ASICs can be used to control the modulator and generation of pulses. The high-speed optical modulator enables high resolution single-photon OTDR measurement by blocking out all return light except from the region of fiber under examination.
    Type: Application
    Filed: April 11, 2018
    Publication date: November 29, 2018
    Inventors: Joseph F. Ahadian, Kris Kusumoto, Charles B. Kuznia
  • Patent number: 9964464
    Abstract: An optical time domain reflectometer (OTDR) system with an integrated high speed optical modulator is capable of operating at a speed similar to the OTDR pulse width to improve the measurement resolution and reduce the time required to acquire a high dynamic range OTDR measurement over existing approaches. ASICs can be used to control the modulator and generation of pulses. The high-speed optical modulator enables high resolution single-photon OTDR measurement by blocking out all return light except from the region of fiber under examination.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: May 8, 2018
    Assignee: Ultra Communications, Inc.
    Inventors: Joseph F. Ahadian, Kris Kusumoto, Charles B. Kuznia
  • Publication number: 20180011259
    Abstract: A protective assembly method using a transparent layer within the fiber interconnect system aids in optical coupling by preventing an air gap from forming between the fiber cores within a connector. A thin transparent film (or with adhesive) is placed over the fiber end-faces at the connector interface, the film having characteristics which allows it to conform to the fiber end and minimize coupling loss between fibers. The film is sized to fit connectors faces and can be temporary, being replaced with each installation. A coating can also applied to the connector surface, providing a similar effect, as well as structurally enhancing the connector surfaces.
    Type: Application
    Filed: September 8, 2017
    Publication date: January 11, 2018
    Inventors: Charles B. Kuznia, Richard J. Pommer, Joseph F. Ahadian, Richard T. Hagan, Man W. Wong
  • Patent number: 9784924
    Abstract: A protective assembly method using a transparent layer within the fiber interconnect system aids in optical coupling by preventing an air gap from forming between the fiber cores within a connector. A thin transparent film (or with adhesive) is placed over the fiber end-faces at the connector interface, the film having characteristics which allows it to conform to the fiber end and minimize coupling loss between fibers. The film is sized to fit connectors faces and can be temporary, being replaced with each installation. A coating can also applied to the connector surface, providing a similar effect, as well as structurally enhancing the connector surfaces.
    Type: Grant
    Filed: June 28, 2015
    Date of Patent: October 10, 2017
    Assignee: ULTRA COMMUNICATIONS, INC.
    Inventors: Charles B. Kuznia, Richard J. Pommer, Joseph F. Ahadian, Richard T. Hagan, Man W. Wong
  • Patent number: 9465176
    Abstract: A fiber optic transceiver that is compatible with packaging into standard semiconductor packages and for SMT packaging, using materials and fabrication procedures that withstand solder assembly processes. The SMT package can have electrical contacts on the exterior of the package for creating electrical conduits to a substrate, such as a PCB, interposer, or circuit card within a larger assembly. The fiber optic transceiver can be of a non-SMT package configuration, being formed with electrical connection technology that allows direct connection to a substrate with electrical wiring, such as a PCB, interposer, or circuit card within a larger assembly. The fiber optic transceiver may have solderballs, metal posts or other electrical conduit technology that allows direct electrical connection to the substrate.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: October 11, 2016
    Assignee: ULTRA COMMUNICATIONS, INC.
    Inventors: Richard J. Pommer, Joseph F. Ahadian, Charles B. Kuznia, Richard T. Hagan
  • Patent number: 9429496
    Abstract: A system for creating an optical time domain reflectometer (OTDR) in a small package is described. This system allows the implementation of multiple channels of OTDR in package of similar size to existing fiber optic transceivers.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: August 30, 2016
    Assignee: ULTRA COMMUNICATIONS, INC.
    Inventors: Charles B. Kuznia, Richard J. Pommer, Joseph F. Ahadian, Richard T. Hagan
  • Publication number: 20150378108
    Abstract: A protective assembly method using a transparent layer within the fiber interconnect system aids in optical coupling by preventing an air gap from forming between the fiber cores within a connector. A thin transparent film (or with adhesive) is placed over the fiber end-faces at the connector interface, the film having characteristics which allows it to conform to the fiber end and minimize coupling loss between fibers. The film is sized to fit connectors faces and can be temporary, being replaced with each installation. A coating can also applied to the connector surface, providing a similar effect, as well as structurally enhancing the connector surfaces.
    Type: Application
    Filed: June 28, 2015
    Publication date: December 31, 2015
    Inventors: Charles B. Kuznia, Richard J. Pommer, Joseph F. Ahadian, Richard T. Hagan, Man W. Wong
  • Publication number: 20150323420
    Abstract: A system for creating an optical time domain reflectometer (OTDR) in a small package is described. This system allows the implementation of multiple channels of OTDR in package of similar size to existing fiber optic transceivers.
    Type: Application
    Filed: April 11, 2013
    Publication date: November 12, 2015
    Inventors: Charles B. Kuznia, Richard J. Pommer, Joseph F. Ahadian, Richard T. Hagan
  • Patent number: 9151916
    Abstract: A device structure and system for connecting optical waveguides to optical transmit and receive components is described. The structure is made of two parts. The lower part contains active optoelectronic components, such as lasers and photodetectors, and optical lenses. The lower part can be assembled by steps of aligning and bonding planar components. The upper part contains optical waveguides and lenses for coupling light into and out of the waveguides. The top part is mechanically connected to the lower part to form a mechanically sound connection. The lens system provides some tolerance to mis-alignment between the top and bottom parts. The system has features that enable fiber optic components to operate and survive in harsh environments, particularly large temperature extremes.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: October 6, 2015
    Assignee: Ultra Communications, Inc.
    Inventors: Richard J. Pommer, Joseph F. Ahadian, Charles B. Kuznia, Richard T. Hagan
  • Publication number: 20150063760
    Abstract: A fiber optic transceiver that is compatible with packaging into standard semiconductor packages and for SMT packaging, using materials and fabrication procedures that withstand solder assembly processes. The SMT package can have electrical contacts on the exterior of the package for creating electrical conduits to a substrate, such as a PCB, interposer, or circuit card within a larger assembly. The fiber optic transceiver can be of a non-SMT package configuration, being formed with electrical connection technology that allows direct connection to a substrate with electrical wiring, such as a PCB, interposer, or circuit card within a larger assembly. The fiber optic transceiver may have solderballs, metal posts or other electrical conduit technology that allows direct electrical connection to the substrate.
    Type: Application
    Filed: April 11, 2013
    Publication date: March 5, 2015
    Inventors: Richard J. Pommer, Joseph F. Ahadian, Charles B. Kuznia, Richard T. Hagan