Patents by Inventor Joseph F. Brooks

Joseph F. Brooks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7274034
    Abstract: A chalcogenide-based programmable conductor memory device and method of forming the device, wherein a chalcogenide glass region is provided with a plurality of alternating tin chalcogenide and metal layers proximate thereto. The method of forming the device comprises sputtering the alternating tin chalcogenide and metal layers.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: September 25, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Kristy A. Campbell, Jon Daley, Joseph F. Brooks
  • Patent number: 7226857
    Abstract: A front-end method of fabricating nickel plated caps over copper bond pads used in a memory device. The method provides protection of the bond pads from an oxidizing atmosphere without exposing sensitive structures in the memory device to the copper during fabrication.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: June 5, 2007
    Assignee: Micron Technology, Inc.
    Inventors: John Moore, Joseph F. Brooks
  • Patent number: 7115992
    Abstract: An electrode structure includes a first layer of conductive material and a dielectric layer formed on a surface of the first layer. An opening is formed in the dielectric layer to expose a portion of the surface of the first layer. A binding layer is formed on the dielectric layer and on the exposed portion of the surface of the first layer and a second layer of conductive material is formed on the conductive binding layer. The binding layer can be an oxide and the second layer a conductive material that is diffusible into an oxide. The electrode structure can be annealed to cause conductive material from the second layer to be chemisorbed into the binding layer to improve adhesion between the first and second layers. A programmable cell can be formed by forming a doped glass layer in the electrode structure.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: October 3, 2006
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Joseph F. Brooks
  • Patent number: 7115504
    Abstract: An electrode structure includes a first layer of conductive material and a dielectric layer formed on a surface of the first layer. An opening is formed in the dielectric layer to expose a portion of the surface of the first layer. A binding layer is formed on the dielectric layer and on the exposed portion of the surface of the first layer and a second layer of conductive material is formed on the conductive binding layer. The binding layer can be an oxide and the second layer a conductive material that is diffusible into an oxide. The electrode structure can be annealed to cause conductive material from the second layer to be chemisorbed into the binding layer to improve adhesion between the first and second layers. A programmable cell can be formed by forming a doped glass layer in the electrode structure.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: October 3, 2006
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Joseph F. Brooks
  • Patent number: 7098068
    Abstract: Embodiments of the invention provide a method of forming a chalcogenide material containing device, and particularly resistance variable memory elements. A stack of one or more layers is formed over a substrate. The stack includes a layer of chalcogenide material and a metal, e.g., silver, containing layer. A protective layer is formed over the stack. The protective layer blocks light, is conductive, and is etchable with the other layers of the stack. Further, the metal of the metal containing layer is substantially insoluble in the protective layer. The stack and the protective layer are then patterned and etched to form memory elements.
    Type: Grant
    Filed: March 10, 2004
    Date of Patent: August 29, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Joseph F. Brooks
  • Patent number: 7064080
    Abstract: A semiconductor processing method includes forming an antireflective coating comprising Ge and Se over a substrate to be patterned. Photoresist is formed over the antireflective coating. The photoresist is exposed to actinic radiation effective to pattern the photoresist. The antireflective coating reduces reflection of actinic radiation during the exposing than would otherwise occur under identical conditions in the absence of the antireflective coating. After the exposing, the substrate is patterned through openings in the photoresist and the antireflective coating using the photoresist and the antireflective coating as a mask. In one implementation, after patterning the substrate, the photoresist and the antireflective coating are chemically etched substantially completely from the substrate using a single etching chemistry.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: June 20, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Terry L. Gilton, Steve W. Bowes, John T. Moore, Joseph F. Brooks, Kristy A. Campbell
  • Patent number: 6912147
    Abstract: The invention is related to methods and apparatus for providing a two-terminal constant current device, and its operation thereof. The invention provides a constant current device that maintains a constant current over an applied voltage range of at least approximately 700 mV. The invention also provides a method of changing and resetting the constant current value in a constant current device by either applying a positive potential to decrease the constant current value, or by applying a voltage more negative than the existing constant current's voltage upper limit, thereby resetting or increasing its constant current level to its original fabricated value. The invention further provides a method of forming and converting a memory device into a constant current device. The invention also provides a method for using a constant current device as an analog memory device.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: June 28, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Kristy A. Campbell, Terry L. Gilton, John T. Moore, Joseph F. Brooks
  • Patent number: 6867064
    Abstract: The present invention is related to methods of fabricating a resistance variable memory element and a device formed therefrom having improved switching characteristics. According to an embodiment of the present invention a resistance variable material memory element is annealed to remove stoichiometric amounts of a component of the resistance variable material. According to another embodiment of the present invention a silver-germanium-selenide glass is annealed for a duration of about 10 minutes in the presence of oxygen to drive off selenium and increase the rigidity of the glass.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: March 15, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Kristy A. Campbell, John Moore, Terry L. Gilton, Joseph F. Brooks
  • Patent number: 6861367
    Abstract: A semiconductor processing method includes forming an antireflective coating comprising Ge and Se over a substrate to be patterned. Photoresist is formed over the antireflective coating. The photoresist is exposed to actinic radiation effective to pattern the photoresist. The antireflective coating reduces reflection of actinic radiation during the exposing than would otherwise occur under identical conditions in the absence of the antireflective coating. After the exposing, the substrate is patterned through openings in the photoresist and the antireflective coating using the photoresist and the antireflective coating as a mask. In one implementation, after patterning the substrate, the photoresist and the antireflective coating are chemically etched substantially completely from the substrate using a single etching chemistry.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: March 1, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Terry L. Gilton, Steve W. Bowes, John T. Moore, Joseph F. Brooks, Kristy A. Campbell
  • Publication number: 20040238958
    Abstract: An electrode structure includes a first layer of conductive material and a dielectric layer formed on a surface of the first layer. An opening is formed in the dielectric layer to expose a portion of the surface of the first layer. A binding layer is formed on the dielectric layer and on the exposed portion of the surface of the first layer and a second layer of conductive material is formed on the conductive binding layer. The binding layer can be an oxide and the second layer a conductive material that is diffusible into an oxide. The electrode structure can be annealed to cause conductive material from the second layer to be chemisorbed into the binding layer to improve adhesion between the first and second layers. A programmable cell can be formed by forming a doped glass layer in the electrode structure.
    Type: Application
    Filed: June 23, 2004
    Publication date: December 2, 2004
    Inventors: John T. Moore, Joseph F. Brooks
  • Publication number: 20040232551
    Abstract: An electrode structure includes a first layer of conductive material and a dielectric layer formed on a surface of the first layer. An opening is formed in the dielectric layer to expose a portion of the surface of the first layer. A binding layer is formed on the dielectric layer and on the exposed portion of the surface of the first layer and a second layer of conductive material is formed on the conductive binding layer. The binding layer can be an oxide and the second layer a conductive material that is diffusible into an oxide. The electrode structure can be annealed to cause conductive material from the second layer to be chemisorbed into the binding layer to improve adhesion between the first and second layers. A programmable cell can be formed by forming a doped glass layer in the electrode structure.
    Type: Application
    Filed: June 24, 2004
    Publication date: November 25, 2004
    Inventors: John T. Moore, Joseph F. Brooks
  • Publication number: 20040233728
    Abstract: The invention is related to methods and apparatus for providing a two-terminal constant current device, and its operation thereof. The invention provides a constant current device that maintains a constant current over an applied voltage range of at least approximately 700 mV. The invention also provides a method of changing and resetting the constant current value in a constant current device by either applying a positive potential to decrease the constant current value, or by applying a voltage more negative than the existing constant current's voltage upper limit, thereby resetting or increasing its constant current level to its original fabricated value. The invention further provides a method of forming and converting a memory device into a constant current device. The invention also provides a method for using a constant current device as an analog memory device.
    Type: Application
    Filed: June 28, 2004
    Publication date: November 25, 2004
    Inventors: Kristy A. Campbell, Terry L. Gilton, John T. Moore, Joseph F. Brooks
  • Publication number: 20040229423
    Abstract: An electrode structure includes a first layer of conductive material and a dielectric layer formed on a surface of the first layer. An opening is formed in the dielectric layer to expose a portion of the surface of the first layer. A binding layer is formed on the dielectric layer and on the exposed portion of the surface of the first layer and a second layer of conductive material is formed on the conductive binding layer. The binding layer can be an oxide and the second layer a conductive material that is diffusible into an oxide. The electrode structure can be annealed to cause conductive material from the second layer to be chemisorbed into the binding layer to improve adhesion between the first and second layers. A programmable cell can be formed by forming a doped glass layer in the electrode structure.
    Type: Application
    Filed: June 23, 2004
    Publication date: November 18, 2004
    Inventors: John T. Moore, Joseph F. Brooks
  • Publication number: 20040223390
    Abstract: The present invention is related to methods of fabricating a resistance variable memory element and a device formed therefrom having improved switching characteristics. According to an embodiment of the present invention a resistance variable material memory element is annealed to remove stoichiometric amounts of a component of the resistance variable material. According to another embodiment of the present invention a silver-germanium-selenide glass is annealed for a duration of about 10 minutes in the presence of oxygen to drive off selenium and increase the rigidity of the glass.
    Type: Application
    Filed: June 14, 2004
    Publication date: November 11, 2004
    Inventors: Kristy A. Campbell, John Moore, Terry L. Gilton, Joseph F. Brooks
  • Patent number: 6815818
    Abstract: An electrode structure includes a first layer of conductive material and a dielectric layer formed on a surface of the first layer. An opening is formed in the dielectric layer to expose a portion of the surface of the first layer. A binding layer is formed on the dielectric layer and on the exposed portion of the surface of the first layer and a second layer of conductive material is formed on the conductive binding layer. The binding layer can be an oxide and the second layer a conductive material that is diffusible into an oxide. The electrode structure can be annealed to cause conductive material from the second layer to be chemisorbed into the binding layer to improve adhesion between the first and second layers. A programmable cell can be formed by forming a doped glass layer in the electrode structure.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: November 9, 2004
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Joseph F. Brooks
  • Patent number: 6813178
    Abstract: The invention is related to methods and apparatus for providing a two-terminal constant current device, and its operation thereof. The invention provides a constant current device that maintains a constant current over an applied voltage range of at least approximately 700 mV. The invention also provides a method of changing and resetting the constant current value in a constant current device by either applying a positive potential to decrease the constant current value, or by applying a voltage more negative than the existing constant current's voltage upper limit, thereby resetting or increasing its constant current level to its original fabricated value. The invention further provides a method of forming and converting a memory device into a constant current device. The invention also provides a method for using a constant current device as an analog memory device.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: November 2, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Kristy A. Campbell, Terry L. Gilton, John T. Moore, Joseph F. Brooks
  • Publication number: 20040179390
    Abstract: The invention is related to methods and apparatus for providing a two-terminal constant current device, and its operation thereof. The invention provides a constant current device that maintains a constant current over an applied voltage range of at least approximately 700 mV. The invention also provides a method of changing and resetting the constant current value in a constant current device by either applying a positive potential to decrease the constant current value, or by applying a voltage more negative than the existing constant current's voltage upper limit, thereby resetting or increasing its constant current level to its original fabricated value. The invention further provides a method of forming and converting a memory device into a constant current device. The invention also provides a method for using a constant current device as an analog memory device.
    Type: Application
    Filed: March 12, 2003
    Publication date: September 16, 2004
    Inventors: Kristy A. Campbell, Terry L. Gilton, John T. Moore, Joseph F. Brooks
  • Publication number: 20040102046
    Abstract: A semiconductor processing method includes forming an antireflective coating comprising Ge and Se over a substrate to be patterned. Photoresist is formed over the antireflective coating. The photoresist is exposed to actinic radiation effective to pattern the photoresist. The antireflective coating reduces reflection of actinic radiation during the exposing than would otherwise occur under identical conditions in the absence of the antireflective coating. After the exposing, the substrate is patterned through openings in the photoresist and the antireflective coating using the photoresist and the antireflective coating as a mask. In one implementation, after patterning the substrate, the photoresist and the antireflective coating are chemically etched substantially completely from the substrate using a single etching chemistry.
    Type: Application
    Filed: November 21, 2003
    Publication date: May 27, 2004
    Inventors: Terry L. Gilton, Steve W. Bowes, John T. Moore, Joseph F. Brooks, Kristy A. Campbell
  • Publication number: 20040014314
    Abstract: A method and apparatus for forming a thermally-evaporated bina (or greater) thin film are disclosed in which the surface area of an evaporatio container is effectively increased by using an inert medium added to source materials that are to form the binary (or greater) film. Using this method a apparatus, films having better uniformity and stoichiometry are achievable.
    Type: Application
    Filed: April 24, 2002
    Publication date: January 22, 2004
    Inventor: Joseph F. Brooks
  • Publication number: 20030155606
    Abstract: The present invention is related to methods of fabricating a resistance variable memory element and a device formed therefrom having improved switching characteristics. According to an embodiment of the present invention a resistance variable material memory element is annealed to remove stoichiometric amounts of a component of the resistance variable material. According to another embodiment of the present invention a silver-germanium-selenide glass is annealed for a duration of about 10 minutes in the presence of oxygen to drive off selenium and increase the rigidity of the glass.
    Type: Application
    Filed: February 15, 2002
    Publication date: August 21, 2003
    Inventors: Kristy A. Campbell, John Moore, Terry L. Gilton, Joseph F. Brooks