Patents by Inventor Joseph H. Colles

Joseph H. Colles has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113502
    Abstract: A pulsed laser diode driver includes a source capacitor that receives a refresh current at a first terminal and develops a source voltage therefrom. A first terminal of an inductor is connected to the first terminal of the source capacitor. A second terminal of the inductor is connected to an anode of a laser diode and a bypass capacitor. One or more switches are configured to control a current flow through the inductor. A timing and control circuit is configured to receive the source voltage and to generate one or more gate driver signals to control the switches to produce a high-current pulse through the laser diode. The high-current pulse corresponds to a peak current of a resonant waveform developed at the anode of the laser diode. A timing of the one or more gate driver signals is based on a voltage level of the source voltage.
    Type: Application
    Filed: October 3, 2022
    Publication date: April 4, 2024
    Applicant: Silanna Asia Pte Ltd
    Inventors: Joseph H. Colles, Steven E. Rosenbaum, Stuart B. Molin
  • Patent number: 11929588
    Abstract: A pulsed laser diode driver includes an inductor having a first terminal configured to receive a source voltage. A source capacitor has a first terminal connected to the first terminal of the inductor to provide the source voltage. A bypass switch has a drain node connected to a second terminal of the inductor and to a first terminal of a bypass capacitor. A laser diode switch has a drain node connected to the second terminal of the inductor. A laser diode has an anode connected to a source node of the laser diode switch and a cathode connected to a bias voltage node. The laser diode switch and the bypass switch control a current flow through the inductor to produce a high-current pulse through the laser diode, the high-current pulse corresponding to a peak current of a resonant waveform developed at the anode of the laser diode.
    Type: Grant
    Filed: March 17, 2023
    Date of Patent: March 12, 2024
    Inventors: Joseph H. Colles, Steven E. Rosenbaum, Stuart B. Molin
  • Patent number: 11901697
    Abstract: A pulsed laser diode driver includes multiple resonant laser diode driver cells, each cell including an inductor having a first inductor terminal to receive a source voltage, a source capacitor coupled between the first inductor terminal and ground, a bypass capacitor having a first terminal connected to the first inductor terminal and a second terminal connected to a second inductor terminal, a laser diode having a cathode that is connected to the first inductor terminal and an anode that is connected to the second inductor terminal, and a bypass switch connected between the second inductor terminal and ground. Each cell's bypass switch is configured to control a current flow through that cell's respective inductor to produce a high-current pulse through that cell's laser diode, the high-current pulse corresponding to a peak current of a resonant waveform developed at the anode of that cell's laser diode.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: February 13, 2024
    Assignee: Silanna Asia Pte Ltd
    Inventors: Joseph H. Colles, Steven E. Rosenbaum, Stuart B. Molin
  • Publication number: 20240047940
    Abstract: A pulsed laser diode driver includes a laser diode switch and a bypass switch to control a current flow through an inductor to produce a high-current pulse through a laser diode, the high-current pulse corresponding to a peak current of a resonant waveform developed at an anode of the laser diode. A current pulse measurement circuit receives a sense voltage developed at a sense resistance and generates, based on the sense voltage, a current sense signal that corresponds to the peak current amplitude of the high-current pulse through the laser diode.
    Type: Application
    Filed: July 27, 2023
    Publication date: February 8, 2024
    Applicant: Silanna Asia Pte Ltd
    Inventors: Joseph H. Colles, Steven E. Rosenbaum, Stuart B. Molin
  • Patent number: 11894656
    Abstract: A pulsed laser diode driver includes a refresh circuit configured to generate a refresh current using a received input voltage. A current amplitude of the refresh current is controlled by the refresh circuit based on a voltage level of a source voltage received by the refresh circuit. A source capacitor of the pulsed laser diode driver is configured to receive the refresh current and to develop the source voltage therefrom. An inductor of the pulsed laser diode driver has a first terminal that is directly electrically connected to the source capacitor. One or more switches of the pulsed laser diode driver are configured to control a current flow through the inductor to produce a high-current pulse through a laser diode that corresponds to a peak current of a resonant waveform developed at an anode of the laser diode.
    Type: Grant
    Filed: March 3, 2022
    Date of Patent: February 6, 2024
    Assignee: Silanna Asia Pte Ltd
    Inventors: Joseph H. Colles, Steven E. Rosenbaum, Stuart B. Molin
  • Patent number: 11863191
    Abstract: An improved ramp generator enables a very high degree of linearity in an output voltage ramp signal. Output ramps of the output voltage ramp signal are alternatingly produced from two preliminary ramp signals during alternating time periods. Preliminary ramps are produced at different preliminary ramp nodes that are alternatingly connected to an output node. The preliminary ramps continuously ramp during and in some cases beyond, e.g., before and/or after, the time periods. In some embodiments, switches alternatingly connect two capacitors to at least one current source, a reset voltage source, and the output node to alternatingly produce the preliminary ramps.
    Type: Grant
    Filed: October 7, 2022
    Date of Patent: January 2, 2024
    Assignee: Silanna Asia Pte Ltd
    Inventors: Joseph H. Colles, Steven E. Rosenbaum
  • Patent number: 11855615
    Abstract: An improved circuit or method generates first and second initial pulses that do not overlap. First and second drive pulses are generated based on the first and second initial pulses, respectively. A first transistor is turned on with the first drive pulses. A second transistor is turned on with the second drive pulses. A current flows in response to an on-time state of the first transistor overlapping with an on-time state of the second transistor. A delay of the second drive pulses is decreased based on a time of the current flow overlapping with one of the first initial pulses; and the delay of the second drive pulses is increased based on the time of the current flow overlapping with one of the second initial pulses.
    Type: Grant
    Filed: February 9, 2023
    Date of Patent: December 26, 2023
    Assignee: Silanna Asia Pte Ltd
    Inventors: Joseph H. Colles, Steven E. Rosenbaum, Stuart B. Molin
  • Patent number: 11831127
    Abstract: A laser diode driver includes a clock terminal to receive a clock signal, configuration terminals to receive configuration data, drive terminals, and charging terminals. A first charging terminal is operable to charge a source capacitor of a resonant circuit that includes the source capacitor, an inductor, and a bypass capacitor. Each drive terminal is operable to be directly electrically connected to an anode or cathode of a laser diode or to ground. A mode, output selection, and grouping of drive signals that are delivered to the laser diodes are configured based on the configuration data. The laser diode driver is operable to control a current flow through the resonant circuit to produce high-current pulses through the laser diodes, the high-current pulses corresponding to a peak current of a resonant waveform developed at respective anodes of the laser diodes, a timing of the high-current pulses being synchronized using the clock signal.
    Type: Grant
    Filed: August 3, 2022
    Date of Patent: November 28, 2023
    Assignee: Silanna Asia Pte Ltd
    Inventors: Joseph H. Colles, Steven E. Rosenbaum, Stuart B. Molin
  • Publication number: 20230318258
    Abstract: A pulsed laser diode driver includes an inductor having a first terminal to receive a source voltage, and a second terminal, a source capacitor coupled between the first terminal of the inductor and ground, a bypass capacitor having a first terminal connected to the first terminal of the inductor and a second terminal connected to the second terminal of the inductor, a laser diode having a cathode that is connected to the first terminal of the inductor and an anode that is connected to the second terminal of the inductor, and a bypass switch connected between the second terminal of the inductor and ground. The bypass switch is configured to control a current flow through the inductor to produce a high-current pulse through the laser diode, the high-current pulse corresponding to a peak current of a resonant waveform developed at the anode of the laser diode.
    Type: Application
    Filed: April 5, 2022
    Publication date: October 5, 2023
    Applicant: Silanna Asia Pte Ltd
    Inventors: Joseph H. Colles, Steven E. Rosenbaum, Stuart B. Molin
  • Publication number: 20230318259
    Abstract: A pulsed laser diode driver includes multiple resonant laser diode driver cells, each cell including an inductor having a first inductor terminal to receive a source voltage, a source capacitor coupled between the first inductor terminal and ground, a bypass capacitor having a first terminal connected to the first inductor terminal and a second terminal connected to a second inductor terminal, a laser diode having a cathode that is connected to the first inductor terminal and an anode that is connected to the second inductor terminal, and a bypass switch connected between the second inductor terminal and ground. Each cell's bypass switch is configured to control a current flow through that cell's respective inductor to produce a high-current pulse through that cell's laser diode, the high-current pulse corresponding to a peak current of a resonant waveform developed at the anode of that cell's laser diode.
    Type: Application
    Filed: April 28, 2022
    Publication date: October 5, 2023
    Applicant: Silanna Asia Pte Ltd
    Inventors: Joseph H. Colles, Steven E. Rosenbaum, Stuart B. Molin
  • Patent number: 11777481
    Abstract: In a delay circuit, first and second sets of transistors are connected in series between a supply voltage and a ground. The first and second sets of transistors both include a current source transistor, a cascode transistor, and a control transistor. The first set of transistors generates a current that charges a capacitor to generate a ramp signal with a positive slope. A first bias transistor may cause the ramp signal to be biased to ground upon activating the first set of transistors. The second set of transistors generates a current that discharges the capacitor to generate the ramp signal with a negative slope. A second bias transistor may cause the ramp signal to be biased to the supply voltage upon activating the second set of transistors. The delay circuit transitions the state of the output signal based on a voltage level of the ramp signal.
    Type: Grant
    Filed: August 29, 2022
    Date of Patent: October 3, 2023
    Assignee: Silanna Asia Pte Ltd
    Inventors: Joseph H. Colles, Steven E. Rosenbaum, Stuart B. Molin
  • Publication number: 20230283045
    Abstract: A pulsed laser diode driver includes a refresh circuit configured to generate a refresh current using a received input voltage. A current amplitude of the refresh current is controlled by the refresh circuit based on a voltage level of a source voltage received by the refresh circuit. A source capacitor of the pulsed laser diode driver is configured to receive the refresh current and to develop the source voltage therefrom. An inductor of the pulsed laser diode driver has a first terminal that is directly electrically connected to the source capacitor. One or more switches of the pulsed laser diode driver are configured to control a current flow through the inductor to produce a high-current pulse through a laser diode that corresponds to a peak current of a resonant waveform developed at an anode of the laser diode.
    Type: Application
    Filed: March 3, 2022
    Publication date: September 7, 2023
    Applicant: Silanna Asia Pte Ltd
    Inventors: Joseph H. Colles, Steven E. Rosenbaum, Stuart B. Molin
  • Publication number: 20230275397
    Abstract: A pulsed laser diode driver includes an inductor having a first terminal configured to receive a source voltage. A source capacitor has a first terminal connected to the first terminal of the inductor to provide the source voltage. A bypass switch has a drain node connected to a second terminal of the inductor and to a first terminal of a bypass capacitor. A laser diode switch has a drain node connected to the second terminal of the inductor. A laser diode has an anode connected to a source node of the laser diode switch and a cathode connected to a bias voltage node. The laser diode switch and the bypass switch control a current flow through the inductor to produce a high-current pulse through the laser diode, the high-current pulse corresponding to a peak current of a resonant waveform developed at the anode of the laser diode.
    Type: Application
    Filed: March 17, 2023
    Publication date: August 31, 2023
    Applicant: Silanna Asia Pte Ltd
    Inventors: Joseph H. Colles, Steven E. Rosenbaum, Stuart B. Molin
  • Publication number: 20230198225
    Abstract: A pulsed laser diode array driver includes an inductor having a first terminal configured to receive a source voltage, a source capacitor coupled between the first terminal of the inductor and ground, a bypass capacitor connected between a second terminal of the inductor and ground, a bypass switch connected between the second terminal of the inductor and ground, a laser diode array with one or more rows of laser diodes, and one or more laser diode switches, each being connected between a respective row node of the laser diode array and ground. The laser diode switches and the bypass switch are configured to control a current flow through the inductor to produce respective high-current pulses through each row of the laser diode array, each of the high-current pulses corresponding to a peak current of a resonant waveform developed at that row of the laser diode array.
    Type: Application
    Filed: February 10, 2023
    Publication date: June 22, 2023
    Applicant: Silanna Asia Pte Ltd
    Inventors: Joseph H. Colles, Steven E. Rosenbaum, Stuart B. Molin
  • Publication number: 20230188132
    Abstract: An improved circuit or method generates first and second initial pulses that do not overlap. First and second drive pulses are generated based on the first and second initial pulses, respectively. A first transistor is turned on with the first drive pulses. A second transistor is turned on with the second drive pulses. A current flows in response to an on-time state of the first transistor overlapping with an on-time state of the second transistor. A delay of the second drive pulses is decreased based on a time of the current flow overlapping with one of the first initial pulses; and the delay of the second drive pulses is increased based on the time of the current flow overlapping with one of the second initial pulses.
    Type: Application
    Filed: February 9, 2023
    Publication date: June 15, 2023
    Applicant: Silanna Asia Pte Ltd
    Inventors: Joseph H. Colles, Steven E. Rosenbaum, Stuart B. Molin
  • Patent number: 11631961
    Abstract: A pulsed laser diode driver includes an inductor having a first terminal configured to receive a source voltage. A source capacitor has a first terminal connected to the first terminal of the inductor to provide the source voltage. A bypass switch has a drain node connected to a second terminal of the inductor and to a first terminal of a bypass capacitor. A laser diode switch has a drain node connected to the second terminal of the inductor. A laser diode has an anode connected to a source node of the laser diode switch and a cathode connected to a bias voltage node. The laser diode switch and the bypass switch control a current flow through the inductor to produce a high-current pulse through the laser diode, the high-current pulse corresponding to a peak current of a resonant waveform developed at the anode of the laser diode.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: April 18, 2023
    Assignee: Silanna Asia Pte Ltd
    Inventors: Joseph H. Colles, Steven E. Rosenbaum, Stuart B. Molin
  • Patent number: 11611337
    Abstract: An improved circuit or method generates first and second initial pulses that do not overlap. First and second drive pulses are generated based on the first and second initial pulses, respectively. A first transistor is turned on with the first drive pulses. A second transistor is turned on with the second drive pulses. A current flows in response to an on-time state of the first transistor overlapping with an on-time state of the second transistor. A delay of the second drive pulses is decreased based on a time of the current flow overlapping with one of the first initial pulses; and the delay of the second drive pulses is increased based on the time of the current flow overlapping with one of the second initial pulses.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: March 21, 2023
    Assignee: Silanna Asia Pte Ltd
    Inventors: Joseph H. Colles, Steven E. Rosenbaum, Stuart B. Molin
  • Patent number: 11600967
    Abstract: A pulsed laser diode array driver includes an inductor having a first terminal configured to receive a source voltage, a source capacitor coupled between the first terminal of the inductor and ground, a bypass capacitor connected between a second terminal of the inductor and ground, a bypass switch connected between the second terminal of the inductor and ground, a laser diode array with one or more rows of laser diodes, and one or more laser diode switches, each being connected between a respective row node of the laser diode array and ground. The laser diode switches and the bypass switch are configured to control a current flow through the inductor to produce respective high-current pulses through each row of the laser diode array, each of the high-current pulses corresponding to a peak current of a resonant waveform developed at that row of the laser diode array.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: March 7, 2023
    Assignee: Silanna Asia Pte Ltd
    Inventors: Joseph H. Colles, Steven E. Rosenbaum, Stuart B. Molin
  • Publication number: 20230034405
    Abstract: An improved ramp generator enables a very high degree of linearity in an output voltage ramp signal. Output ramps of the output voltage ramp signal are alternatingly produced from two preliminary ramp signals during alternating time periods. Preliminary ramps are produced at different preliminary ramp nodes that are alternatingly connected to an output node. The preliminary ramps continuously ramp during and in some cases beyond, e.g., before and/or after, the time periods. In some embodiments, switches alternatingly connect two capacitors to at least one current source, a reset voltage source, and the output node to alternatingly produce the preliminary ramps.
    Type: Application
    Filed: October 7, 2022
    Publication date: February 2, 2023
    Applicant: Silanna Asia Pte Ltd
    Inventors: Joseph H. Colles, Steven E. Rosenbaum
  • Patent number: 11552558
    Abstract: A charge pump having only NMOS devices charges a plurality of capacitors to a parallel charged voltage level by electrically connecting the capacitors in parallel between an input voltage node and a ground by activating a plurality of first NMOS transistor switches and a plurality of second NMOS transistor switches and deactivating a plurality of third NMOS transistor switches. The charge pump then generates a series capacitor output voltage level at a capacitor series output node by electrically connecting and discharging the capacitors in series between the input voltage node and the capacitor series output node by activating the third NMOS transistor switches and deactivating the first NMOS transistor switches and the second NMOS transistor switches.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: January 10, 2023
    Assignee: Silanna Asia Pte Ltd
    Inventors: Joseph H. Colles, Steven E. Rosenbaum, Stuart B. Molin