Patents by Inventor Joshua Moore

Joshua Moore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180181136
    Abstract: A system includes an inspection robot having a number of payloads, a number of arms mounted to the payloads, and a number of sleds mounted to the arms. The system includes a number of sensors, each mounted to a corresponding sled, such that the sensor is operationally coupleable to an inspection surface in contact with a bottom surface of the corresponding sled. A couplant chamber is provided within at least two of the sleds, the couplant chamber between a transducer of a sensor and the inspection surface. The system includes a biasing member for each of the arms, where the biasing member provides a down force on the corresponding sled.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 28, 2018
    Inventors: Mark Loosararian, Joshua Moore, Yizhu Gu, Kevin Low, Edward Bryner, Logan MacKenzie, Ian Miller, Alvin Chou, Todd Joslin
  • Publication number: 20180180886
    Abstract: Systems, devices, and methods for beam combining are described. A monolithic beam combiner includes a solid volume of optically transparent material having two orthogonally positioned planar input surfaces, an output surface, and at least two planar dichroic reflectors positioned within the solid volume. Multiple light sources input light into the solid volume through the two planar input surfaces such that each light beam from a respective source is initially incident on one of the planar dichroic reflectors. The light is reflected by and transmitted through the reflectors and an aggregate beam is created. Because the reflectors are within an optically transparent material the beam combiner can be made more compact than a conventional beam combiner. This monolithic beam combiner is particularly well suited for use laser projectors and in wearable heads-up displays that employ laser projectors.
    Type: Application
    Filed: December 20, 2017
    Publication date: June 28, 2018
    Inventors: Lloyd Frederick Holland, Joshua Moore
  • Patent number: 9989764
    Abstract: Systems, devices, and methods for eyebox expansion by exit pupil replication in wearable heads-up displays (“WHUDs”) are described. A WHUD includes a scanning laser projector (“SLP”), a holographic combiner, and an optical splitter positioned in the optical path therebetween. The optical splitter receives light signals generated by the SLP and separates the light signals into N sub-ranges based on the point of incidence of each light signal at the optical splitter. The optical splitter redirects the light signals corresponding to respective ones of the N sub-ranges towards the holographic combiner effectively from respective ones of N spatially-separated virtual positions for the SLP. The holographic combiner converges the light signals to respective ones of N spatially-separated exit pupils at the eye of the user. In this way, multiple instances of the exit pupil are distributed over the area of the eye and the eyebox of the WHUD is expanded.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: June 5, 2018
    Assignee: THALMIC LABS INC.
    Inventors: Stefan Alexander, Matthew Bailey, Vance R. Morrison, Lloyd Frederick Holland, Joshua Moore
  • Patent number: 9958682
    Abstract: Systems, devices, and methods for optical splitters are described. An optical splitter includes a transparent polygonal structure having an input side to receive light from a light source and an output side that is segmented into multiple facets. Each facet is engineered to provide a respective planar surface that is oriented at a different angle in each of at least two spatial dimensions relative to the other facets in order to refract and route a respective portion of the light along a respective set of optical paths. The input side may be faceted as well to further refine the optical paths. A particular application of the polygonal structure in an optical splitter providing eyebox expansion by exit pupil replication in a scanning laser-based wearable heads-up display is described in detail.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: May 1, 2018
    Assignee: THALMIC LABS INC.
    Inventors: Joshua Moore, Lloyd Frederick Holland
  • Publication number: 20180101013
    Abstract: Systems, devices, and methods for optical splitters are described. An optical splitter includes a transparent polygonal structure having an input side to receive light from a light source and an output side that is segmented into multiple facets. Each facet is engineered to provide a respective planar surface that is oriented at a different angle in each of at least two spatial dimensions relative to the other facets in order to refract and route a respective portion of the light along a respective set of optical paths. The input side may be faceted as well to further refine the optical paths. A particular application of the polygonal structure in an optical splitter providing eyebox expansion by exit pupil replication in a scanning laser-based wearable heads-up display is described in detail.
    Type: Application
    Filed: December 18, 2017
    Publication date: April 12, 2018
    Inventors: Joshua Moore, Lloyd Frederick Holland
  • Publication number: 20180089966
    Abstract: Communication devices are disclosed. In an example embodiment, a communication device may include a communication module including an illumination source and a body element. The body element may be configured to allow illumination generated by the illumination source to propagate within and illuminate at least a portion of an outer surface of the body element.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 29, 2018
    Inventors: Rafik Ward, Stephen T. Nelson, Frank Flens, Cindy Hsin-I Hsieh, Lucy G. Hosking, Joshua Moore
  • Patent number: 9824552
    Abstract: Communication devices are disclosed. In an example embodiment, a communication device may include a communication module including an illumination source and a body element. The body element may be configured to allow illumination generated by the illumination source to propagate within and illuminate at least a portion of an outer surface of the body element.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: November 21, 2017
    Assignee: FINISAR CORPORATION
    Inventors: Rafik Ward, Stephen T. Nelson, Frank Flens, Cindy Hsin-I Hsieh, Lucy G. Hosking, Joshua Moore
  • Publication number: 20160377866
    Abstract: Systems, devices, and methods for eyebox expansion by exit pupil replication in wearable heads-up displays (“WHUDs”) are described. A WHUD includes a scanning laser projector (“SLP”), a holographic combiner, and an optical splitter positioned in the optical path therebetween. The optical splitter receives light signals generated by the SLP and separates the light signals into N sub-ranges based on the point of incidence of each light signal at the optical splitter. The optical splitter redirects the light signals corresponding to respective ones of the N sub-ranges towards the holographic combiner effectively from respective ones of N spatially-separated virtual positions for the SLP. The holographic combiner converges the light signals to respective ones of N spatially-separated exit pupils at the eye of the user. In this way, multiple instances of the exit pupil are distributed over the area of the eye and the eyebox of the WHUD is expanded.
    Type: Application
    Filed: February 17, 2016
    Publication date: December 29, 2016
    Inventors: Stefan Alexander, Matthew Bailey, Vance R. Morrison, Lloyd Frederick Holland, Joshua Moore
  • Publication number: 20160093175
    Abstract: Communication devices are disclosed. In an example embodiment, a communication device may include a communication module including an illumination source and a body element. The body element may be configured to allow illumination generated by the illumination source to propagate within and illuminate at least a portion of an outer surface of the body element.
    Type: Application
    Filed: December 2, 2015
    Publication date: March 31, 2016
    Inventors: Rafik Ward, Stephen T. Nelson, Frank Flens, Cindy Hsin-I Hsieh, Lucy G. Hosking, Joshua Moore
  • Patent number: 9230416
    Abstract: Communication devices are disclosed. In an example embodiment, a communication device may include a communication module including an illumination source and a body element. The body element may be configured to allow illumination generated by the illumination source to propagate within and illuminate at least a portion of an outer surface of the body element.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: January 5, 2016
    Assignee: FINISAR CORPORATION
    Inventors: Rafik Ward, Stephen T. Nelson, Frank Flens, Cindy Hsin-I Hsieh, Lucy G. Hosking, Joshua Moore
  • Patent number: 9203516
    Abstract: An identification device is configured to be coupled externally to an optoelectronic device to provide connectivity and/or identification information in an optical network in which the optoelectronic device is implemented. The identification device may include an integrated circuit with unique identification information and a plurality of contacts coupled to the integrated circuit and configured to be coupled to an outside identification system. The outside identification system communicates with the identification device via the plurality of contacts to collect unique identification information, the ability to retrieve the unique identification information additionally implicating connectivity in some embodiments. The identification device may include a plurality of clips configured to engage corresponding posts on a latch of the optoelectronic device.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: December 1, 2015
    Assignee: FINISAR CORPORATION
    Inventors: Joshua Moore, Greta Light
  • Publication number: 20140205298
    Abstract: An identification device is configured to be coupled externally to an optoelectronic device to provide connectivity and/or identification information in an optical network in which the optoelectronic device is implemented. The identification device may include an integrated circuit with unique identification information and a plurality of contacts coupled to the integrated circuit and configured to be coupled to an outside identification system. The outside identification system communicates with the identification device via the plurality of contacts to collect unique identification information, the ability to retrieve the unique identification information additionally implicating connectivity in some embodiments. The identification device may include a plurality of clips configured to engage corresponding posts on a latch of the optoelectronic device.
    Type: Application
    Filed: August 13, 2013
    Publication date: July 24, 2014
    Applicant: FINISAR CORPORATION
    Inventors: Joshua Moore, Greta Light
  • Publication number: 20140035755
    Abstract: Communication devices are disclosed. In an example embodiment, a communication device may include a communication module including an illumination source and a body element. The body element may be configured to allow illumination generated by the illumination source to propagate within and illuminate at least a portion of an outer surface of the body element.
    Type: Application
    Filed: March 12, 2013
    Publication date: February 6, 2014
    Applicant: Finisar Corporation
    Inventors: Rafik Ward, Stephen T. Nelson, Frank Flens, Cindy Hsin-I Hsieh, Lucy G. Hosking, Joshua Moore
  • Patent number: 8525649
    Abstract: An identification device is configured to be coupled externally to an optoelectronic device to provide connectivity and/or identification information in an optical network in which the optoelectronic device is implemented. The identification device may include an integrated circuit with unique identification information and a plurality of contacts coupled to the integrated circuit and configured to be coupled to an outside identification system. The outside identification system communicates with the identification device via the plurality of contacts to collect unique identification information, the ability to retrieve the unique identification information additionally implicating connectivity in some embodiments. The identification device may include a plurality of clips configured to engage corresponding posts on a latch of the optoelectronic device.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: September 3, 2013
    Assignee: Finisar Corporation
    Inventors: Joshua Moore, Greta Light
  • Patent number: 8356728
    Abstract: In one example, a rotatable top shell is provided for an example optoelectronic device. The rotatable top shell includes a body defining a curved tongue on one end. The tongue is configured to rotate about a complimenting curved mating surface of a bottom shell of the optoelectronic device to allow the body to rotate between an open position and a closed position. The rotatable top shell further includes means for securing the rotatable top shell relative to the bottom shell. The means for securing the rotatable top shell may include one or more of: a plurality of nubs defined along at least one edge of the body, a hole defined in the body for receiving a retention pin of the bottom shell, two sides for being received within a main cavity of the bottom shell, or the like.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: January 22, 2013
    Assignee: Finisar Corporation
    Inventors: Joshua Moore, Daehwan Daniel Kim, Gary Dean Sasser
  • Patent number: 8267599
    Abstract: Optical subassembly grounding in an optoelectronic module. In one example embodiment, a conductive OSA grounding gasket assembly includes a top gasket and a bottom gasket. The top gasket includes a top shell surface and a top OSA surface. The top shell surface is configured to be in direct physical contact with a conductive top shell of an optoelectronic module. The top OSA surface is configured to make direct physical contact with a conductive housing of an OSA. The bottom gasket includes a bottom OSA surface and a bottom shell surface. The bottom OSA surface is configured to be in direct physical contact with the conductive housing of the OSA. The bottom shell surface is configured to make direct physical contact with a conductive bottom shell of the optoelectronic module.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: September 18, 2012
    Assignee: Finisar Corporation
    Inventors: Hung V. Nguyen, Yongshan Zhang, Joshua Moore
  • Patent number: 8218335
    Abstract: A clip for securing a component, such as a circuit board, within a communications module is disclosed. The clip may include a flat base with legs extending therefrom and resilient springs disposed at terminal ends of each of the legs. The legs may be configured to frictionally secure the clip to the module. For instance, the legs may secure the clip to a top shell portion of the module. The springs may be configured to resiliently compress against corresponding contact zones on the circuit board when the top shell is mated with a bottom shell of the module such that the circuit board is secured in place within the module. Accordingly, embodiments of the invention enable the quick and simple assembly of modules without the need for fasteners and other time-consuming and/or labor-intensive solutions conventionally implemented to secure circuit boards and other components within the modules.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: July 10, 2012
    Assignee: Finisar Corporation
    Inventors: Joshua Moore, Stephen Todd Nelson, Hung Van Nguyen
  • Patent number: 8202011
    Abstract: A printed circuit board assembly (PCBA) carrier for enclosing an optical transceiver PCBA. The PCBA carrier includes a base portion including one or more first connection members, the base portion being configured to receive an optical transceiver PCBA and a top portion including one or more second connection members configured to couple to the first connection members to thereby secure the top portion to the base portion, the top portion being configured to reside above the optical transceiver PCBA when the first and second connection members are coupled. The PCBA carrier is further configured to enclose the optical transceiver PCBA when the base and top portions are coupled to provide a solid structure for the optical transceiver PCBA without the need for a separate optical transceiver module housing.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: June 19, 2012
    Assignee: Finisar Corporation
    Inventor: Joshua Moore
  • Patent number: 8129630
    Abstract: In one example embodiment, an angular seam includes a first complementary structure defined in a first shell of an optoelectronic transceiver module, and a second complementary structure defined in a second shell of the optoelectronic transceiver module. The second complementary structure is configured to receive the first complementary structure so that an angular seam is defined that is substantially non-transmissive to electromagnetic radiation.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: March 6, 2012
    Assignee: Finisar Corporation
    Inventor: Joshua Moore
  • Patent number: 8083415
    Abstract: Electrical connections from the printed circuit board (“PCB”) of an optoelectronic device through the front or line-side of the device enable a microcontroller or other component on the PCB to electrically communicate with an optical connector or other line-side device. The electrical connections can be integrated within a lead frame and trace structure providing mechanical support for the electrical connections and the PCB, with each electrical connection including a PCB-side contact and a line-side contact supported by the integrated structure. Alternately, the electrical connections can be integrated within one or more flex circuits. The optical connector can include traces and contacts configured to be electrically coupled to corresponding line-side contacts when the optical connector is received within the device.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: December 27, 2011
    Assignee: Finisar Corporation
    Inventors: Joshua Moore, Greta Light