Patents by Inventor Joshua T. Smith

Joshua T. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190299208
    Abstract: A technique relates to a fluidic cell configured to hold a nanofluidic chip. A first plate is configured to hold the nanofluidic chip. A second plate is configured to fit on top of the first plate, such that the nanofluidic chip is held in place. The second plate has at least one first port and at least one second port. The second plate has an entrance hole configured to communicate with an inlet hole of the nanofluidic chip. The second port is angled above the first port, such that the first port and second port intersect to form a junction. The second port is formed to have a line-of-sight to the entrance hole, such that the second port is configured to receive input for extracting air trapped at a vicinity of the entrance hole.
    Type: Application
    Filed: May 31, 2019
    Publication date: October 3, 2019
    Inventors: Michael A. Pereira, Joshua T. Smith, Benjamin H. Wunsch
  • Publication number: 20190299827
    Abstract: Composite components (22, 32) are described herein. An example composite component (22, 32) includes a fill material sandwiched between a first shell and a second shell. The first shell can include a cavity for receiving the fill material. The second shell can include a recessed portion extending into the cavity. The recessed portion can be configured to receive a separate component (16a, 30) of a passenger seat (12).
    Type: Application
    Filed: July 7, 2016
    Publication date: October 3, 2019
    Applicant: Safran Seats USA LLC
    Inventors: Marc W. Kinard, Joshua T. Smith
  • Patent number: 10393642
    Abstract: A technique related to sorting entities is provided. An inlet is configured to receive a fluid, and an outlet is configured to exit the fluid. A nanopillar array, connected to the inlet and the outlet, is configured to allow the fluid to flow from the inlet to the outlet. The nanopillar array includes nanopillars arranged to separate entities by size. The nanopillars are arranged to have a gap separating one nanopillar from another nanopillar. The gap is constructed to be in a nanoscale range.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: August 27, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann A. Astier, Robert L. Bruce, Joshua T. Smith, Chao Wang, Benjamin H. Wunsch
  • Patent number: 10391486
    Abstract: A technique relates to a fluidic cell configured to hold a nanofluidic chip. A first plate is configured to hold the nanofluidic chip. A second plate is configured to fit on top of the first plate, such that the nanofluidic chip is held in place. The second plate has at least one first port and at least one second port. The second plate has an entrance hole configured to communicate with an inlet hole of the nanofluidic chip. The second port is angled above the first port, such that the first port and second port intersect to form a junction. The second port is formed to have a line-of-sight to the entrance hole, such that the second port is configured to receive input for extracting air trapped at a vicinity of the entrance hole.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: August 27, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael A. Pereira, Joshua T. Smith, Benjamin H. Wunsch
  • Publication number: 20190226953
    Abstract: Microscale and/or mesoscale condenser arrays that can facilitate microfluidic separation and/or purification of mesoscale and/or nanoscale particles and methods of operation are described herein. An apparatus comprises a condenser array comprising pillars arranged in a plurality of columns, wherein a pillar gap greater than or equal to about 0.5 micrometers is located between a first pillar of the pillars in a first column of the columns and a second pillar of the plurality of pillars in the first column, and wherein the first pillar is adjacent to the second pillar. The first ratio can be characterized by Dx/Dy is less than or equal to a first defined value, wherein Dx represents a first distance across the lattice in a first direction, wherein Dy represents a second distance across the lattice in a second direction, and wherein the first direction is orthogonal to the second direction.
    Type: Application
    Filed: January 19, 2018
    Publication date: July 25, 2019
    Inventors: Benjamin H. Wunsch, Joshua T. Smith, Sung-Cheol Kim, Stacey M. Gifford
  • Publication number: 20190224677
    Abstract: Microfluid chips that comprise one or more microscale and/or mesoscale condenser arrays, which can facilitate particle purification and/or fractionation, are described herein. In one embodiment, an apparatus can comprise a layer of a microfluidic chip. The layer can comprise an inlet that can receive fluid, an outlet that can output a purified version of the fluid, and a condenser array coupled between and in fluid communication with the inlet and the outlet. The condenser array can comprise a plurality of pillars arranged in a plurality of columns. Also, a pillar gap sized to facilitate a throughput rate of the fluid of greater than or equal to about 1.0 nanoliter per hour can be located between a first pillar of the plurality of pillars in a first column of the plurality of columns and a second pillar of the plurality of pillars in the first column.
    Type: Application
    Filed: January 19, 2018
    Publication date: July 25, 2019
    Inventors: Joshua T. Smith, Stacey M. Gifford, Sung-Cheol Kim, Benjamin H. Wunsch
  • Publication number: 20190224679
    Abstract: Microfluidic chips that can comprise thin substrates and/or a high density of vias are described herein. An apparatus comprises: a silicon device layer comprising a plurality of vias, the plurality of vias comprising greater than or equal to about 100 vias per square centimeter of a surface of the silicon device layer and less than or equal to about 100,000 vias per square centimeter of the surface of the silicon device layer, and the plurality of vias extending through the silicon device layer; and a sealing layer bonded to the silicon device layer, wherein the sealing layer has greater rigidity than the silicon device layer. In some embodiments, the silicon device layer has a thickness between about 7 micrometers and about 500 micrometers while a via of the plurality of vias has a diameter between about 5 micrometers and about 5 millimeters.
    Type: Application
    Filed: January 19, 2018
    Publication date: July 25, 2019
    Inventors: Joshua T. Smith, William Francis Landers, Kevin Winstel, Teresa Jacqueline Wu
  • Patent number: 10349653
    Abstract: The present disclosure relates to methods for forming an antimicrobial nanostructure and antimicrobial articles. The methods may include: providing a master template of a layout of the antimicrobial nanostructure on a silicon substrate, depositing a silicon nitride layer on a top surface of the silicon substrate, forming a patterned lithographic resist mask layer on a top surface of the silicon nitride layer, generating certain silicon pillars according to the patterned lithographic resist mask using a resist and reactive ion etching, forming certain lateral silicon nanospikes on the silicon pillars by performing metal assisted chemical etching (MacEtch), and removing the silicon nitride layer and bonding a top cover glass on the silicon pillars to form the antimicrobial nanostructure having lateral silicon nanospikes.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: July 16, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stacey M. Gifford, Huan Hu, Pablo Meyer Rojas, Joshua T. Smith
  • Publication number: 20190153516
    Abstract: A technique relates to separation of a mixture. A nano-deterministic lateral displacement (nanoDLD) array is configured to separate the mixture in a fluid. A feedback system is configured to control a velocity of the fluid through the nanoDLD array. The feedback system is configured to control the velocity of the fluid to separate one or more entities in the mixture.
    Type: Application
    Filed: January 22, 2019
    Publication date: May 23, 2019
    Inventors: Stacey M. Gifford, Joshua T. Smith, Benjamin H. Wunsch
  • Patent number: 10251390
    Abstract: The present disclosure relates to methods for forming an antimicrobial nanostructure and antimicrobial articles. The methods may include: providing a master template of a layout of the antimicrobial nanostructure on a silicon substrate, depositing a silicon nitride layer on a top surface of the silicon substrate, forming a patterned lithographic resist mask layer on a top surface of the silicon nitride layer, generating certain silicon pillars according to the patterned lithographic resist mask using a resist and reactive ion etching, forming certain lateral silicon nanospikes on the silicon pillars by performing metal assisted chemical etching (MacEtch), and removing the silicon nitride layer and bonding a top cover glass on the silicon pillars to form the antimicrobial nanostructure having lateral silicon nanospikes.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: April 9, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stacey M. Gifford, Huan Hu, Pablo Meyer Rojas, Joshua T. Smith
  • Patent number: 10253350
    Abstract: A technique relates to separation of a mixture. A nano-deterministic lateral displacement (nanoDLD) array is configured to separate the mixture in a fluid. A feedback system is configured to control a velocity of the fluid through the nanoDLD array. The feedback system is configured to control the velocity of the fluid to separate one or more entities in the mixture.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: April 9, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stacey M. Gifford, Joshua T. Smith, Benjamin H. Wunsch
  • Patent number: 10247700
    Abstract: A technique relates to manufacturing a nanogap. An oxide layer is disposed on top of a substrate. A release layer is disposed in a pattern on top of the oxide layer. A patterned trench is etched into the oxide layer using the pattern of the release layer. A metal layer is disposed on the release layer and in the patterned trench. A polish removes the release layer, thereby removing both the release layer and a portion of the metal layer having been disposed on top of the release layer, such that the metal layer remaining includes a first metal part and a second metal part connected by a metal nanowire. The metal layer remaining is coplanar with the oxide layer. A nanochannel is formed in the oxide layer in a region of the metal nanowire. The nanogap is formed in the metal nanowire separating the first and second metal parts.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: April 2, 2019
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, BIONANO GENOMICS, INC.
    Inventors: Huan Hu, Michael F. Lofaro, Joshua T. Smith, Benjamin H. Wunsch, Daniel J. Solis
  • Patent number: 10232372
    Abstract: A technique relates to an integrated nanofluidic device. A loading layer includes an inlet channel reservoir, a diverted fraction reservoir, and a passed fraction reservoir. A sorting layer is attached to the loading layer such that fluid is permitted to communicate between the loading and sorting layers, where the sorting layer includes a bank of sorting elements. The sorting layer has inlet channels and outlet channels connected to the sorting elements, and the inlet channel reservoir is connected to the inlet channels by an inlet feed hole. The diverted fraction reservoir is connected to the outlet channels by a diverted fraction outlet feed hole, and the passed fraction reservoir is connected to the sorting elements by passed fraction feed holes. The passed fraction feed holes are respectively connected to the sorting elements.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: March 19, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joshua T. Smith, Benjamin H. Wunsch, Cornelia T. Yang
  • Patent number: 10226767
    Abstract: A technique relates to a fluidic cell configured to hold a nanofluidic chip. A first plate is configured to hold the nanofluidic chip. A second plate is configured to fit on top of the first plate, such that the nanofluidic chip is held in place. The second plate has at least one first port and at least one second port. The second plate has an entrance hole configured to communicate with an inlet hole of the nanofluidic chip. The second port is angled above the first port, such that the first port and second port intersect to form a junction. The second port is formed to have a line-of-sight to the entrance hole, such that the second port is configured to receive input for extracting air trapped at a vicinity of the entrance hole.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: March 12, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael A. Pereira, Joshua T. Smith, Benjamin H. Wunsch
  • Publication number: 20190072518
    Abstract: A method for forming a nanogap includes forming a knockoff feature on a dielectric layer and forming a trench in the dielectric layer on opposite sides of the knockoff feature. A noble metal is deposited in the trenches and over the knockoff feature. A top surface is polished to level the noble metal in the trenches with a top of the dielectric layer to form electrodes in the trenches and to remove the noble metal from the knockoff feature. A nanochannel is etched into the dielectric layer such that the knockoff feature is positioned within the nanochannel. The knockoff feature is removed to form a nanogap between the electrodes.
    Type: Application
    Filed: October 31, 2018
    Publication date: March 7, 2019
    Inventors: Adam M. Pyzyna, Joshua T. Smith, Benjamin H. Wunsch
  • Publication number: 20190045777
    Abstract: The present disclosure relates to methods for forming an antimicrobial nanostructure and antimicrobial articles. The methods may include: providing a master template of a layout of the antimicrobial nanostructure on a silicon substrate, depositing a silicon nitride layer on a top surface of the silicon substrate, forming a patterned lithographic resist mask layer on a top surface of the silicon nitride layer, generating certain silicon pillars according to the patterned lithographic resist mask using a resist and reactive ion etching, forming certain lateral silicon nanospikes on the silicon pillars by performing metal assisted chemical etching (MacEtch), and removing the silicon nitride layer and bonding a top cover glass on the silicon pillars to form the antimicrobial nanostructure having lateral silicon nanospikes.
    Type: Application
    Filed: October 17, 2018
    Publication date: February 14, 2019
    Inventors: STACEY M. GIFFORD, HUAN HU, PABLO MEYER ROJAS, JOSHUA T. SMITH
  • Patent number: 10196598
    Abstract: A system for heating or cooling a sample is disclosed, which includes an insulated chamber; at least one of a heater or a cooling pad disposed within the chamber; and at least one compliant, fluid filled pillow. The at least one compliant, fluid-filled pillow is disposed in the chamber and adjacent to the at least one thermal device while being heated or cooled to a desired temperature by the heater or the cooling pad, and upon reaching the desired temperature, the at least one compliant, fluid filled pillow substantially conforms to a container containing the sample.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: February 5, 2019
    Assignee: CPSI HOLDINGS LLC
    Inventors: John M. Baust, Joshua T. Smith, William Corwin, Kristi Snyder, Anthony T. Robilotto
  • Patent number: 10168299
    Abstract: A method for forming a nanogap includes forming a knockoff feature on a dielectric layer and forming a trench in the dielectric layer on opposite sides of the knockoff feature. A noble metal is deposited in the trenches and over the knockoff feature. A top surface is polished to level the noble metal in the trenches with a top of the dielectric layer to form electrodes in the trenches and to remove the noble metal from the knockoff feature. A nanochannel is etched into the dielectric layer such that the knockoff feature is positioned within the nanochannel. The knockoff feature is removed to form a nanogap between the electrodes.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: January 1, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Adam M. Pyzyna, Joshua T. Smith, Benjamin H. Wunsch
  • Publication number: 20180340654
    Abstract: A cryogenic system as well as a method of generating a pressurized, sub-cooled mixed-phase cryogen and a method of delivering such a cryogen to a cryoprobe are disclosed. In an embodiment, the cryogenic system includes a reservoir containing a liquid cryogen and a sub-cooling coil immersed in the liquid cryogen. The cryogen is supplied to the sub-cooling coil and is cooled under pressure to produce a pressurized mixed phase cryogen within the sub-cooling coil. This pressurized mixed phase cryogen is provided via supply line to a cryo-device for use.
    Type: Application
    Filed: July 23, 2018
    Publication date: November 29, 2018
    Inventors: John M. Baust, Joshua T. Smith, Anthony T. Robilotto, Jennie F. McKain
  • Patent number: 10107803
    Abstract: In one example, a device includes a trench formed in a substrate. The trench includes a first end and a second end that are non-collinear. A first plurality of semiconductor pillars is positioned near the first end of the trench and includes integrated light sources. A second plurality of semiconductor pillars is positioned near the second end of the trench and includes integrated photodetectors.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: October 23, 2018
    Assignee: International Business Machines Corporation
    Inventors: Yann Astier, Huan Hu, Ning Li, Devendra K. Sadana, Joshua T. Smith, William T. Spratt