Patents by Inventor Juan Carlos Rocha

Juan Carlos Rocha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200203132
    Abstract: A system for modifying the uniformity pattern of a thin film deposited in a plasma processing chamber includes a single radio-frequency (RF) power source that is coupled to multiple points on the discharge electrode of the plasma processing chamber. Positioning of the multiple coupling points, a power distribution between the multiple coupling points, or a combination of both are selected to at least partially compensate for a consistent non-uniformity pattern of thin films produced by the chamber. The power distribution between the multiple coupling points may be produced by an appropriate RF phase difference between the RF power applied at each of the multiple coupling points.
    Type: Application
    Filed: March 2, 2020
    Publication date: June 25, 2020
    Inventors: Zheng John YE, Ganesh BALASUBRAMANIAN, Thuy BRITCHER, Jay D. PINSON, II, Hiroji HANAWA, Juan Carlos ROCHA-ALVAREZ, Kwangduk Douglas LEE, Martin Jay SEAMONS, Bok Hoen KIM, Sungwon HA
  • Patent number: 10692703
    Abstract: Embodiments of the present disclosure generally relate to a substrate support assembly in a semiconductor processing chamber. The semiconductor processing chamber may be a PECVD chamber including a substrate support assembly having a substrate support and a stem coupled to the substrate support. An RF electrode is embedded in the substrate support and a rod is coupled to the RF electrode. The rod is made of titanium (Ti) or of nickel (Ni) coated with gold (Au), silver (Ag), aluminum (Al), or copper (Cu). The rod made of Ti or of Ni coated with Au, Ag, Al or Cu has a reduced electrical resistivity and increased skin depth, which minimizes heat generation as RF current travels through the rod.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: June 23, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xing Lin, Jianhua Zhou, Ningli Liu, Juan Carlos Rocha-Alvarez
  • Publication number: 20200173017
    Abstract: Embodiments of the present disclosure generally relate to substrate support assemblies used in semiconductor device manufacturing. In one embodiment, a substrate support includes a ceramic body having at least one aperture formed therein defined by a sidewall. A plurality of recesses extend into the sidewall, a rod member is disposed in the at least one aperture, and an eyelet member is circumferentially disposed about the rod member. The eyelet member has a plurality of protrusions extending outwardly therefrom, each disposed in a corresponding recess of the plurality of recesses. A first portion of each protrusion is in contact with a sidewall of the respective recess of the ceramic body and a second portion of each protrusion is separated by a gap from the sidewall of the respective recess of the ceramic body. A first portion of a brazing material is disposed between an upper surface of the at least one aperture and an end of the rod member.
    Type: Application
    Filed: November 27, 2019
    Publication date: June 4, 2020
    Inventors: Chidambara A. RAMALINGAM, Juan Carlos ROCHA, Joseph M. POLESE, Katty Marie Lydia Gamon GUYOMARD, Jian LI
  • Publication number: 20200173022
    Abstract: Embodiments of the disclosure describe an apparatus and a method for depositing a film layer that may have minimum contribution to overlay error after a sequence of deposition and lithographic exposure processes. In one example, a method includes positioning a substrate on a substrate support in a process chamber, and flowing a deposition gas mixture comprising a silicon containing gas and a reacting gas to the process chamber through a showerhead having a convex surface facing the substrate support or a concave surface facing the substrate support in accordance with a stress profile of the substrate. A plasma is formed in the presence of the deposition gas mixture in the process chamber by applying an RF power to multiple coupling points of the showerhead that are symmetrically arranged about a center point of the showerhead. A deposition process is then performed on the substrate.
    Type: Application
    Filed: November 8, 2019
    Publication date: June 4, 2020
    Inventors: Xinhai HAN, Deenesh PADHI, Daemian Raj BENJAMIN RAJ, Kristopher ENSLOW, Wenjiao WANG, Masaki OGATA, Sai Susmita ADDEPALLI, Nikhil Sudhindrarao JORAPUR, Gregory Eugene CHICHKANOFF, Shailendra SRIVASTAVA, Jonghoon BAEK, Zakaria IBRAHIMI, Juan Carlos ROCHA-ALVAREZ, Tza-Jing GUNG
  • Patent number: 10669629
    Abstract: The present disclosure relates to a semiconductor processing apparatus. The processing chamber includes a chamber body and lid defining an interior volume, a substrate support disposed in the interior volume and a showerhead assembly disposed between the lid and the substrate support. The showerhead assembly includes a faceplate configured to deliver a process gas to a processing region defined between the showerhead assembly and the substrate support and an underplate positioned above the faceplate, defining a first plenum between the lid and the underplate, the having multiple zones, wherein each zone has a plurality of openings that are configured to pass an amount of inert gas from the first plenum into a second plenum defined between the faceplate and the underplate, in fluid communication with the plurality of openings of each zone such that the inert gas mixes with the process gas before exiting the showerhead assembly.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: June 2, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Amit Kumar Bansal, Juan Carlos Rocha-Alvarez, Sanjeev Baluja, Sam H. Kim, Tuan Anh Nguyen
  • Patent number: 10663491
    Abstract: A voltage-current sensor enables more accurate measurement of the voltage, current, and phase of RF power that is delivered to high-temperature processing region. The sensor includes a planar body comprised of a non-organic, electrically insulative material, a measurement opening formed in the planar body, a voltage pickup disposed around the measurement opening, and a current pickup disposed around the measurement opening. Because of the planar configuration and material composition of the sensor, the sensor can be disposed proximate to or in contact with a high-temperature surface of a plasma processing chamber.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: May 26, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Zheng John Ye, Jay D. Pinson, II, Juan Carlos Rocha, Abdul Aziz Khaja
  • Patent number: 10636684
    Abstract: Implementations disclosed herein describe a bevel etch apparatus within a loadlock bevel etch chamber and methods of using the same. The bevel etch apparatus has a mask assembly within the loadlock bevel etch chamber. During an etch process, the mask assembly delivers a gas flow to control bevel etch without the use of a shadow frame. As such, the edge exclusion at the bevel edge can be reduced, thus increasing product yield.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: April 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Saptarshi Basu, Jeongmin Lee, Paul Connors, Dale R. Du Bois, Prashant Kumar Kulshreshtha, Karthik Thimmavajjula Narasimha, Brett Berens, Kalyanjit Ghosh, Jianhua Zhou, Ganesh Balasubramanian, Kwangduk Douglas Lee, Juan Carlos Rocha-Alvarez, Hiroyuki Ogiso, Liliya Krivulina, Rick Gilbert, Mohsin Waqar, Venkatanarayana Shankaramurthy, Hari K. Ponnekanti
  • Patent number: 10599043
    Abstract: Implementations described herein generally relate to methods for leveling a component above a substrate. In one implementation, a test substrate is placed on a substrate support inside of a processing chamber. A component, such as a mask, is located above the substrate. The component is lowered to a position so that the component and the substrate are in contact. The component is then lifted and the particle distribution on the test substrate is reviewed. Based on the particle distribution, the component may be adjusted. A new test substrate is placed on the substrate support inside of the processing chamber, and the component is lowered to a position so that the component and the new test substrate are in contact. The particle distribution on the new test substrate is reviewed. The process may be repeated until a uniform particle distribution is shown on a test substrate.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: March 24, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Hiroyuki Ogiso, Jianhua Zhou, Zonghui Su, Juan Carlos Rocha-Alvarez, Jeongmin Lee, Karthik Thimmavajjula Narasimha, Rick Gilbert, Sang Heon Park, Abdul Aziz Khaja, Vinay Prabhakar
  • Patent number: 10580623
    Abstract: A system for modifying the uniformity pattern of a thin film deposited in a plasma processing chamber includes a single radio-frequency (RF) power source that is coupled to multiple points on the discharge electrode of the plasma processing chamber. Positioning of the multiple coupling points, a power distribution between the multiple coupling points, or a combination of both are selected to at least partially compensate for a consistent non-uniformity pattern of thin films produced by the chamber. The power distribution between the multiple coupling points may be produced by an appropriate RF phase difference between the RF power applied at each of the multiple coupling points.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: March 3, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Zheng John Ye, Ganesh Balasubramanian, Thuy Britcher, Jay D. Pinson, II, Hiroji Hanawa, Juan Carlos Rocha-Alvarez, Kwangduk Douglas Lee, Martin Jay Seamons, Bok Hoen Kim, Sungwon Ha
  • Patent number: 10570517
    Abstract: Embodiments of the present invention provide apparatus and methods for performing UV treatment and chemical treatment and/or deposition in the same chamber. One embodiment of the present invention provides a processing chamber including a UV transparent gas distribution showerhead disposed above a substrate support located in an inner volume of the processing chamber, a UV transparent window disposed above the UV transparent gas distribution showerhead, and a UV unit disposed outside the inner volume. The UV unit is configured to direct UV lights towards the substrate support through the UV transparent window and the UV transparent gas distribution showerhead.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: February 25, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Amit Bansal, Dale R. Du Bois, Juan Carlos Rocha-Alvarez, Sanjeev Baluja, Scott A. Hendrickson, Thomas Nowak
  • Publication number: 20200058539
    Abstract: Embodiments described herein relate to coating materials with high resistivity for use in processing chambers. To counteract the high charges near the top surface of the thermal conductive support, the top surface of the thermal conductive support can be coated with a high resistivity layer. The high resistivity of the layer reduces the amount of charge at the top surface of the thermally conductive element, greatly reducing or preventing arcing incidents along with reducing electrostatic chucking degradation. The high resistivity layer can also be applied to other chamber components. Embodiments described herein also relate to methods for fabricating a chamber component for use in a processing environment. The component can be fabricated by forming a body of a chamber component, optionally ex-situ seasoning the body, installing the chamber component into a processing chamber, in-situ seasoning the chamber component, and performing a deposition process in the processing chamber.
    Type: Application
    Filed: July 23, 2019
    Publication date: February 20, 2020
    Inventors: Sudha RATHI, Dong Hyung LEE, Abdul Aziz KHAJA, Ganesh BALASUBRAMANIAN, Juan Carlos ROCHA
  • Publication number: 20200051848
    Abstract: A method and apparatus for a pedestal is provided. In one embodiment, the pedestal includes a body comprising a ceramic material having a flange, one or more heating elements embedded in the body, a first shaft coupled to the flange, and a second shaft coupled to the first shaft; wherein the second shaft includes a plurality of fluid channels formed therein that terminate in the second shaft.
    Type: Application
    Filed: October 22, 2019
    Publication date: February 13, 2020
    Inventors: Xing LIN, Jianhua ZHOU, Juan Carlos ROCHA-ALVAREZ, Ramprakash SANKARAKRISHNAN
  • Publication number: 20200043723
    Abstract: Embodiments described herein relate to manufacturing layer stacks of oxide/nitride (ON) layers with minimized in-plane distortion (IPD) and lithographic overlay errors. A method of forming a layer stack ON layers includes flowing a first silicon-containing gas, an oxygen-containing gas, and a first dilution gas. A RF power is symmetrically applied to form a first material layer of SiO2. A second silicon-containing gas, a nitrogen-containing gas, and a second dilution gas are flowed. A second RF power is symmetrically applied to form a second material layer of Si3N4. The flowing the first silicon-containing gas, the oxygen-containing gas, and the first dilution gas, the symmetrically applying the first RF power, the flowing the second silicon-containing gas, the nitrogen-containing gas, and the second dilution gas, and the symmetrically applying the second RF power is repeated until a desired number of first material layers and second material layers make up a layer stack.
    Type: Application
    Filed: July 18, 2019
    Publication date: February 6, 2020
    Inventors: Yongjing LIN, Tza-Jing GUNG, Masaki OGATA, Yusheng ZHOU, Xinhai HAN, Deenesh PADHI, Juan Carlos ROCHA, Amit Kumar BANSAL, Mukund SRINIVASAN
  • Publication number: 20200041407
    Abstract: Systems and methods used to deliver a processing gas having a desired diborane concentration to a processing volume of a processing chamber are provided herein. In one embodiment a system includes a borane concentration sensor. The borane concentration sensor includes a body and a plurality of windows. Here, individual ones of the plurality of windows are disposed at opposite ends of the body and the body and the plurality of windows collectively define a cell volume. The borane concentration sensor further includes a radiation source disposed outside of the cell volume proximate to a first window of the plurality of windows, and a radiation detector disposed outside the cell volume proximate to a second window of the plurality of windows.
    Type: Application
    Filed: July 2, 2019
    Publication date: February 6, 2020
    Inventors: Zubin HUANG, Sarah Langlois WHITE, Jonathan Robert BAKKE, Diwakar N. KEDLAYA, Juan Carlos ROCHA, Fang RUAN
  • Publication number: 20200035522
    Abstract: A method and apparatus for processing a semiconductor is disclosed herein. In one embodiment, a processing system for semiconductor processing is disclosed. The processing chamber includes two transfer chambers, a processing chamber, and a rotation module. The processing chamber is coupled to the transfer chamber. The rotation module is positioned between the transfer chambers. The rotation module is configured to rotate the substrate. The transfer chambers are configured to transfer the substrate between the processing chamber and the transfer chamber. In another embodiment, a method for processing a substrate on the apparatus is disclosed herein.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 30, 2020
    Inventors: Tuan Anh NGUYEN, Amit Kumar BANSAL, Juan Carlos ROCHA-ALVAREZ
  • Patent number: 10544508
    Abstract: An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor such as a face plate coupled to a power source, and a heater coupled to the conductive gas distributor. A zoned blocker plate is coupled to the conductive gas distributor and a cooled gas cap is coupled to the zoned blocker plate. A tuning electrode may be disposed between the conductive gas distributor and the chamber body for adjusting a ground pathway of the plasma. A second tuning electrode may be coupled to the substrate support, and a bias electrode may also be coupled to the substrate support.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: January 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Juan Carlos Rocha-Alvarez, Amit Kumar Bansal, Ganesh Balasubramanian, Jianhua Zhou, Ramprakash Sankarakrishnan
  • Publication number: 20200010957
    Abstract: Embodiments provide a plasma processing apparatus, substrate support assembly, and method of controlling a plasma process. The apparatus and substrate support assembly include a substrate support pedestal, a tuning assembly that includes a tuning electrode that is disposed in the pedestal and electrically coupled to a radio frequency (RF) tuner, and a heating assembly that includes one or more heating elements disposed within the pedestal for controlling a temperature profile of the substrate, where at least one of the heating elements is electrically coupled to an RF filter circuit that includes a first inductor configured in parallel with a formed capacitance of the first inductor to ground. The high impedance of the RF filters can be achieved by tuning the resonance of the RF filter circuit, which results in less RF leakage and better substrate processing results.
    Type: Application
    Filed: September 18, 2019
    Publication date: January 9, 2020
    Inventors: Jian J. CHEN, Mohamad A. AYOUB, Juan Carlos ROCHA-ALVAREZ, Zheng John YE, Ramprakash SANKARAKRISHNAN, Jianhua ZHOU
  • Publication number: 20200013586
    Abstract: In some embodiments, the semiconductor process apparatus comprises a conductive support comprising mesh, a conductive shaft comprising a conductive rod, and a plurality of connection elements. The plurality of connection elements are coupled to the mesh in parallel and are connected to the rod at a single junction. The plurality of connection elements help spread RF current, reducing localized heating in the substrate, resulting in a more uniform film deposition. Additionally, using connection elements that are merged and coupled to a single RF rod allow for the rod to be made of materials that can conduct RF current at lower temperatures.
    Type: Application
    Filed: June 20, 2019
    Publication date: January 9, 2020
    Inventors: Jun MA, Jian LI, David H. QUACH, Amit Kumar BANSAL, Juan Carlos ROCHA
  • Patent number: 10518418
    Abstract: The present disclosure generally relates to semiconductor process equipment used to transfer semiconductor substrates between process chambers. More specifically, embodiments described herein are related to systems and methods used to transfer, or swap, semiconductor substrates between process chambers using a transport device that employs at least two blades for the concurrent transfer of substrates between processing chambers.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: December 31, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Dale R. Du Bois, Juan Carlos Rocha-Alvarez, Karthik Janakiraman, Hari K. Ponnekanti, Sanjeev Baluja, Prajeeth Wilton
  • Publication number: 20190390334
    Abstract: Alignment systems employing actuators provide relative displacement between lid assemblies of process chambers and substrates, and related methods are disclosed. A process chamber includes chamber walls defining a process volume in which a substrate may be placed and the walls support a lid assembly of the process chamber. The lid assembly contains at least one of an energy source and a process gas dispenser. Moreover, an alignment system may include at least one each of a bracket, an interface member, and an actuator. By attaching the bracket to the chamber wall and securing the interface member to the lid assembly, the actuator may communicate with the bracket and the interface member to provide relative displacement between the chamber wall and the lid assembly. In this manner, the lid assembly may be positioned relative to the substrate to improve process uniformity across the substrate within the process chamber.
    Type: Application
    Filed: September 5, 2019
    Publication date: December 26, 2019
    Inventors: Danny D. WANG, Jason Michael LAMB, Jun Tae CHOI, Rupankar CHOUDHURY, Zhong Qiang HUA, Juan Carlos ROCHA-ALVAREZ