Patents by Inventor Judson R. Holt

Judson R. Holt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150084096
    Abstract: A faceted intrinsic buffer semiconductor material is deposited on sidewalls of a source trench and a drain trench by selective epitaxy. A facet adjoins each edge at which an outer sidewall of a gate spacer adjoins a sidewall of the source trench or the drain trench. A doped semiconductor material is subsequently deposited to fill the source trench and the drain trench. The doped semiconductor material can be deposited such that the facets of the intrinsic buffer semiconductor material are extended and inner sidewalls of the deposited doped semiconductor material merges in each of the source trench and the drain trench. The doped semiconductor material can subsequently grow upward. Faceted intrinsic buffer semiconductor material portions allow greater outdiffusion of dopants near faceted corners while suppressing diffusion of dopants in regions of uniform width, thereby suppressing short channel effects.
    Type: Application
    Filed: October 7, 2014
    Publication date: March 26, 2015
    Inventors: Bhupesh Chandra, Paul Chang, Gregory G. Freeman, Dechao Guo, Judson R. Holt, Arvind Kumar, Timothy J. McArdle, Shreesh Narasimha, Viorel Ontalus, Sangameshwar Saudari, Christopher D. Sheraw, Matthew W. Stoker
  • Patent number: 8946064
    Abstract: A method of forming a semiconductor device that includes providing a substrate including a semiconductor layer on a germanium-containing silicon layer and forming a gate structure on a surface of a channel portion of the semiconductor layer. Well trenches are etched into the semiconductor layer on opposing sides of the gate structure. The etch process for forming the well trenches forms an undercut region extending under the gate structure and is selective to the germanium-containing silicon layer. Stress inducing semiconductor material is epitaxially grown to fill at least a portion of the well trench to provide at least one of a stress inducing source region and a stress inducing drain region having a planar base.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Thomas N. Adam, Judson R. Holt, Alexander Reznicek, Thomas A. Wallner
  • Patent number: 8940595
    Abstract: A faceted intrinsic buffer semiconductor material is deposited on sidewalls of a source trench and a drain trench by selective epitaxy. A facet adjoins each edge at which an outer sidewall of a gate spacer adjoins a sidewall of the source trench or the drain trench. A doped semiconductor material is subsequently deposited to fill the source trench and the drain trench. The doped semiconductor material can be deposited such that the facets of the intrinsic buffer semiconductor material are extended and inner sidewalls of the deposited doped semiconductor material merges in each of the source trench and the drain trench. The doped semiconductor material can subsequently grow upward. Faceted intrinsic buffer semiconductor material portions allow greater outdiffusion of dopants near faceted corners while suppressing diffusion of dopants in regions of uniform width, thereby suppressing short channel effects.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 27, 2015
    Assignee: International Business Machines Corporation
    Inventors: Bhupesh Chandra, Paul Chang, Gregory G. Freeman, Dechao Guo, Judson R. Holt, Arvind Kumar, Timothy J. McArdle, Shreesh Narasimha, Viorel Ontalus, Sangameshwar Rao Saudari, Christopher D. Sheraw, Matthew W. Stoker
  • Publication number: 20150011070
    Abstract: A gate pattern is formed on a first region of a substrate. An epitaxial layer is formed on a second region of the substrate. A recess is formed in the second region of the substrate by etching the epitaxial layer and the substrate underneath. The first region is adjacent to the second region.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 8, 2015
    Inventors: Jin-Bum Kim, Kyung-Bum Koo, Taek-Soo Jeon, Tae-Ho Cha, Judson R. Holt, Henry K. Utomo
  • Publication number: 20140353732
    Abstract: A semiconductor device and method for manufacturing the same, wherein the method includes fabrication of field effect transistors (FET). The method includes growing a doped epitaxial halo region in a plurality of sigma-shaped source and drain recesses within a semiconductor substrate. An epitaxial stressor material is grown within the sigma-shaped source and drain recesses surrounded by the doped epitaxial halo forming source and drain regions with controlled current depletion towards the channel region to improve device performance. Selective growth of epitaxial regions allows for control of dopants profile and hence tailored and enhanced carrier mobility within the device.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventors: Thomas N. Adam, Keith E. Fogel, Judson R. Holt, Balasubramanian Pranatharthiharan, Alexander Reznicek
  • Publication number: 20140264558
    Abstract: A faceted intrinsic buffer semiconductor material is deposited on sidewalls of a source trench and a drain trench by selective epitaxy. A facet adjoins each edge at which an outer sidewall of a gate spacer adjoins a sidewall of the source trench or the drain trench. A doped semiconductor material is subsequently deposited to fill the source trench and the drain trench. The doped semiconductor material can be deposited such that the facets of the intrinsic buffer semiconductor material are extended and inner sidewalls of the deposited doped semiconductor material merges in each of the source trench and the drain trench. The doped semiconductor material can subsequently grow upward. Faceted intrinsic buffer semiconductor material portions allow greater outdiffusion of dopants near faceted corners while suppressing diffusion of dopants in regions of uniform width, thereby suppressing short channel effects.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bhupesh Chandra, Paul Chang, Gregory G. Freeman, Dechao Guo, Judson R. Holt, Arvind Kumar, Timothy J. McArdle, Shreesh Narasimha, Viorel Ontalus, Sangameshwar Rao Saudari, Christopher D. Sheraw, Matthew W. Stoker
  • Patent number: 8815656
    Abstract: A semiconductor processing method is provided which promotes greater growth on <110> crystallographic planes than on other crystallographic planes. Growth rates with the process can be reversed compared to typical epitaxial growth processes such that the highest rate of growth occurs on <110> crystallographic planes and the least amount of growth occurs on <100> crystallographic planes. The process can be applied to form embedded stressor regions in planar field effect transistors, and the process can be used to grow semiconductor layers on exposed wall surfaces of adjacent fins in source-drain regions of finFETs to fill spaces between the fins.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: August 26, 2014
    Assignee: International Business Machines Corporation
    Inventors: Thomas N. Adam, Kangguo Cheng, Judson R. Holt, Keith H. Tabakman, Alexander Reznicek
  • Publication number: 20140213029
    Abstract: A method produces a transistor. The method forms a strain-producing layer on a base layer and then removes at least one portion of the strain-producing layer to create at least one opening in the strain-producing layer. This leaves first and second portions of the strain-producing layer on the substrate. The first and second portions of the strain-producing layer comprise source and drain stressor regions of the transistor. The method then grows a channel region in the opening of the strain-producing layer from the base layer, forms a gate insulator on the channel region, and forms a gate conductor on the gate insulator.
    Type: Application
    Filed: March 31, 2014
    Publication date: July 31, 2014
    Applicant: International Business Machines Corporation
    Inventors: Judson R. Holt, Viorel C. Ontalus, Keith H. Tabakman
  • Patent number: 8779525
    Abstract: A complementary metal oxide semiconductor (CMOS) circuit incorporating a substrate and a gate wire over the substrate. The substrate comprises an n-type field effect transistor (n-FET) region, a p-type field effect transistor (p-FET) region and an isolation region disposed between the n-FET and p-FET regions. The gate wire comprises an n-FET gate, a p-FET gate, and gate material extending transversely from the n-FET gate across the isolation region to the p-FET gate. A first conformal insulator covers the gate wire and a second conformal insulator is on the first conformal insulator positioned over the p-FET gate without extending laterally over the n-FET gate. Straining regions for producing different types of strain are formed in recess etched into the n-FET and p-FET regions of the substrate.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: July 15, 2014
    Assignees: International Business Machines Corporation, GlobalFoundries, Inc
    Inventors: Bo Bai, Linda Black, Abhishek Dube, Judson R. Holt, Viorel C. Ontalus, Kathryn T. Schonenberg, Matthew W. Stoker, Keith H. Tabakman
  • Publication number: 20140159161
    Abstract: A direct measurement of lattice spacing by X-ray diffraction is performed on a periodic array of unit structures provided on a substrate including semiconductor devices. Each unit structure includes a single crystalline strained material region and at least one stress-generating material region. For example, the single crystalline strained material region may be a structure simulating a channel of a field effect transistor, and the at least one stress-generating material region may be a single crystalline semiconductor region in epitaxial alignment with the single crystalline strained material region. The direct measurement can be performed in-situ at various processing states to provide in-line monitoring of the strain in field effect transistors in actual semiconductor devices.
    Type: Application
    Filed: February 12, 2014
    Publication date: June 12, 2014
    Applicant: International Business Machines Corporation
    Inventors: Thomas N. Adam, Stephen W. Bedell, Eric C. Harley, Judson R. Holt, Anita Madan, Conal E. Murray, Teresa L. Pinto
  • Patent number: 8716037
    Abstract: A direct measurement of lattice spacing by X-ray diffraction is performed on a periodic array of unit structures provided on a substrate including semiconductor devices. Each unit structure includes a single crystalline strained material region and at least one stress-generating material region. For example, the single crystalline strained material region may be a structure simulating a channel of a field effect transistor, and the at least one stress-generating material region may be a single crystalline semiconductor region in epitaxial alignment with the single crystalline strained material region. The direct measurement can be performed in-situ at various processing states to provide in-line monitoring of the strain in field effect transistors in actual semiconductor devices.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: May 6, 2014
    Assignee: International Business Machines Corporation
    Inventors: Thomas N. Adam, Stephen W. Bedell, Eric C. Harley, Judson R. Holt, Anita Madan, Conal E. Murray, Teresa L. Pinto
  • Publication number: 20140077275
    Abstract: A semiconductor processing method is provided which promotes greater growth on <110> crystallographic planes than on other crystallographic planes. Growth rates with the process can be reversed compared to typical epitaxial growth processes such that the highest rate of growth occurs on <110> crystallographic planes and the least amount of growth occurs on <100> crystallographic planes. The process can be applied to form embedded stressor regions in planar field effect transistors, and the process can be used to grow semiconductor layers on exposed wall surfaces of adjacent fins in source-drain regions of finFETs to fill spaces between the fins.
    Type: Application
    Filed: September 19, 2012
    Publication date: March 20, 2014
    Applicant: International Business Machines Corporation
    Inventors: Thomas N. Adam, Kangguo Cheng, Judson R. Holt, Keith H. Tabakman, Alexander Reznicek
  • Patent number: 8642434
    Abstract: While embedded silicon germanium alloy and silicon carbon alloy provide many useful applications, especially for enhancing the mobility of MOSFETs through stress engineering, formation of alloyed silicide on these surfaces degrades device performance. The present invention provides structures and methods for providing unalloyed silicide on such silicon alloy surfaces placed on semiconductor substrates. This enables the formation of low resistance contacts for both mobility enhanced PFETs with embedded SiGe and mobility enhanced NFETs with embedded Si:C on the same semiconductor substrate. Furthermore, this invention provides methods for thick epitaxial silicon alloy, especially thick epitaxial Si:C alloy, above the level of the gate dielectric to increase the stress on the channel on the transistor devices.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: February 4, 2014
    Assignee: International Business Machines Corporation
    Inventors: Yaocheng Liu, Dureseti Chidambarrao, Oleg Gluschenkov, Judson R. Holt, Renee T. Mo, Kern Rim
  • Patent number: 8618617
    Abstract: A method for forming a field effect transistor device includes forming a gate stack portion on a substrate, forming a spacer portion on the gates stack portion and a portion of the substrate, removing an exposed portion of the substrate, epitaxially growing a first silicon material on the exposed portion of the substrate, removing a portion of the epitaxially grown first silicon material to expose a second portion of the substrate, and epitaxially growing a second silicon material on the exposed second portion of the substrate and the first silicon material.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: December 31, 2013
    Assignees: International Business Machines Corporation, GlobalFoundries, Inc.
    Inventors: Kevin K. Chan, Abhishek Dube, Eric C. Harley, Judson R. Holt, Viorel C. Ontalus, Kathryn T. Schonenberg, Matthew W. Stoker, Keith H. Tabakman, Linda R. Black
  • Patent number: 8598009
    Abstract: A low energy surface is formed by a high temperature anneal of the surfaces of trenches on each side of a gate stack. The material of the semiconductor layer reflows during the high temperature anneal such that the low energy surface is a crystallographic surface that is at a non-orthogonal angle with the surface normal of the semiconductor layer. A lattice mismatched semiconductor material is selectively grown on the semiconductor layer to fill the trenches, thereby forming embedded lattice mismatched semiconductor material portions in source and drain regions of a transistor. The embedded lattice mismatched semiconductor material portions can be in-situ doped without increasing punch-through. Alternately, a combination of intrinsic selective epitaxy and ion implantation can be employed to form deep source and drain regions.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: December 3, 2013
    Assignees: International Business Machines Corporation, Globalfoundries, Inc.
    Inventors: Brian J. Greene, William K. Henson, Judson R. Holt, Michael D. Steigerwalt, Kuldeep Amarnath, Rohit Pal, Johan W. Weijtmans
  • Patent number: 8575655
    Abstract: Various techniques for changing the workfunction of the substrate by using a SiGe channel which, in turn, changes the bandgap favorably for a p-type metal oxide semiconductor field effect transistors (pMOSFETs) are disclosed. In the various techniques, a SiGe film that includes a low doped SiGe region above a more highly doped SiGe region to allow the appropriate threshold voltage (Vt) for pMOSFET devices while preventing pitting, roughness and thinning of the SiGe film during subsequent cleans and processing is provided.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: November 5, 2013
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Ashima B. Chakravarti, Michael P. Chudzik, Judson R. Holt, Dominic J. Schepis
  • Patent number: 8513718
    Abstract: A transistor device includes a gate conductor spaced above a semiconductor substrate by a gate dielectric, wherein the semiconductor substrate comprises a channel region underneath the gate conductor and recessed regions on opposite sides of the channel region, wherein the channel region comprises undercut areas under the gate conductor; a stressed material embedded in the undercut areas of the channel region under the gate conductor; and epitaxially grown source and drain regions disposed in the recessed regions of the semiconductor substrate laterally adjacent to the stressed material.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: August 20, 2013
    Assignee: International Business Machines Corporation
    Inventors: Johnathan E. Faltermeier, Judson R. Holt, Xuefeng Hua
  • Patent number: 8492234
    Abstract: A method for forming a field effect transistor device includes forming a gate stack portion on a substrate, forming a spacer portion on the gates stack portion and a portion of the substrate, removing an exposed portion of the substrate, epitaxially growing a first silicon material on the exposed portion of the substrate, removing a portion of the epitaxially grown first silicon material to expose a second portion of the substrate, and epitaxially growing a second silicon material on the exposed second portion of the substrate and the first silicon material.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: July 23, 2013
    Assignees: International Business Machines Corporation, GlobalFoundries Inc.
    Inventors: Kevin K. Chan, Abhishek Dube, Eric C. Harley, Judson R. Holt, Viorel C. Ontalus, Kathryn T. Schonenberg, Matthew W. Stoker, Keith H. Tabakman, Linda R. Black
  • Patent number: 8440547
    Abstract: Various techniques for changing the workfunction of the substrate by using a SiGe channel which, in turn, changes the bandgap favorably for a p-type metal oxide semiconductor field effect transistors (pMOSFETs) are disclosed. In the various techniques, a SiGe film that includes a low doped SiGe region above a more highly doped SiGe region to allow the appropriate threshold voltage (Vt) for pMOSFET devices while preventing pitting, roughness and thinning of the SiGe film during subsequent cleans and processing is provided.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: May 14, 2013
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Ashima B. Chakravarti, Michael P. Chudzik, Judson R. Holt, Dominic J. Schepis
  • Patent number: 8426265
    Abstract: A method of manufacturing a complementary metal oxide semiconductor (CMOS) circuit, in which the method includes a reactive ion etch (RIE) of a CMOS circuit substrate that forms recesses, the CMOS circuit substrate including: an n-type field effect transistor (n-FET) region; a p-type field effect transistor (p-FET) region; an isolation region disposed between the n-FET and p-FET regions; and a gate wire comprising an n-FET gate, a p-FET gate, and gate material extending transversely from the n-FET gate across the isolation region to the p-FET gate, in which the recesses are formed adjacent to sidewalls of a reduced thickness; growing silicon germanium (SiGe) in the recesses; depositing a thin insulator layer on the CMOS circuit substrate; masking at least the p-FET region; removing the thin insulator layer from an unmasked n-FET region and an unmasked portion of the isolation region; etching the CMOS circuit substrate with hydrogen chloride (HCl) to remove the SiGe from the recesses in the n-FET region; and g
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: April 23, 2013
    Assignees: International Business Machines Corporation, GlobalFoundries, Inc.
    Inventors: Bo Bai, Linda Black, Abhishek Dube, Judson R. Holt, Viorel C. Ontalus, Kathryn T. Schonenberg, Matthew W. Stoker, Keith H. Tabakman