Patents by Inventor Judson R. Holt

Judson R. Holt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8426265
    Abstract: A method of manufacturing a complementary metal oxide semiconductor (CMOS) circuit, in which the method includes a reactive ion etch (RIE) of a CMOS circuit substrate that forms recesses, the CMOS circuit substrate including: an n-type field effect transistor (n-FET) region; a p-type field effect transistor (p-FET) region; an isolation region disposed between the n-FET and p-FET regions; and a gate wire comprising an n-FET gate, a p-FET gate, and gate material extending transversely from the n-FET gate across the isolation region to the p-FET gate, in which the recesses are formed adjacent to sidewalls of a reduced thickness; growing silicon germanium (SiGe) in the recesses; depositing a thin insulator layer on the CMOS circuit substrate; masking at least the p-FET region; removing the thin insulator layer from an unmasked n-FET region and an unmasked portion of the isolation region; etching the CMOS circuit substrate with hydrogen chloride (HCl) to remove the SiGe from the recesses in the n-FET region; and g
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: April 23, 2013
    Assignees: International Business Machines Corporation, GlobalFoundries, Inc.
    Inventors: Bo Bai, Linda Black, Abhishek Dube, Judson R. Holt, Viorel C. Ontalus, Kathryn T. Schonenberg, Matthew W. Stoker, Keith H. Tabakman
  • Patent number: 8421191
    Abstract: Semiconductor structures are disclosed that include at least one FET gate stack located on a semiconductor substrate. The at least one FET gate stack includes source and drain extension regions located within the semiconductor substrate. A device channel is also present between the source and drain extension regions and beneath the at least one gate stack. Embedded stressor elements are located on opposite sides of the at least one FET gate stack and within the semiconductor substrate. Each stressor element includes a lower layer of a first epitaxy doped semiconductor material having a lattice constant that is different from a lattice constant of the semiconductor substrate and imparts a strain in the device channel, and an upper layer of a second epitaxy doped semiconductor material. At least one monolayer of dopant is located within the upper layer of each of the embedded stressor elements.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: April 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Abhishek Dube, Judson R. Holt, Jinghong Li, Joseph S. Newbury, Viorel Ontalus, Dae-Gyu Park, Zhengmao Zhu
  • Patent number: 8361859
    Abstract: An embedded, strained epitaxial semiconductor material, i.e., an embedded stressor element, is formed at the footprint of at least one pre-fabricated field effect transistor that includes at least a patterned gate stack, a source region and a drain region. As a result, the metastability of the embedded, strained epitaxial semiconductor material is preserved and implant and anneal based relaxation mechanisms are avoided since the implants and anneals are performed prior to forming the embedded, strained epitaxial semiconductor material.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: January 29, 2013
    Assignee: International Business Machines Corporation
    Inventors: Thomas N. Adam, Stephen W. Bedell, Abhishek Dube, Eric C. T. Harley, Judson R. Holt, Alexander Reznicek, Devendra K. Sadana, Dominic J. Schepis, Matthew W. Stoker, Keith H. Tabakman
  • Publication number: 20120326168
    Abstract: A method of forming a semiconductor device that includes providing a substrate including a semiconductor layer on a germanium-containing silicon layer and forming a gate structure on a surface of a channel portion of the semiconductor layer. Well trenches are etched into the semiconductor layer on opposing sides of the gate structure. The etch process for forming the well trenches forms an undercut region extending under the gate structure and is selective to the germanium-containing silicon layer. Stress inducing semiconductor material is epitaxially grown to fill at least a portion of the well trench to provide at least one of a stress inducing source region and a stress inducing drain region having a planar base.
    Type: Application
    Filed: September 10, 2012
    Publication date: December 27, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas N. Adam, Judson R. Holt, Alexander Reznicek, Thomas A. Wallner
  • Publication number: 20120319166
    Abstract: A method of forming a semiconductor device that includes providing a substrate including a semiconductor layer on a germanium-containing silicon layer and forming a gate structure on a surface of a channel portion of the semiconductor layer. Well trenches are etched into the semiconductor layer on opposing sides of the gate structure. The etch process for forming the well trenches forms an undercut region extending under the gate structure and is selective to the germanium-containing silicon layer. Stress inducing semiconductor material is epitaxially grown to fill at least a portion of the well trench to provide at least one of a stress inducing source region and a stress inducing drain region having a planar base.
    Type: Application
    Filed: June 16, 2011
    Publication date: December 20, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas N. Adam, Judson R. Holt, Alexander Reznicek, Thomas A. Wallner
  • Patent number: 8299535
    Abstract: Semiconductor structures are disclosed that have embedded stressor elements therein. The disclosed structures include at least one FET gate stack located on an upper surface of a semiconductor substrate. The at least one FET gate stack includes source and drain extension regions located within the semiconductor substrate at a footprint of the at least one FET gate stack. A device channel is also present between the source and drain extension regions and beneath the at least one gate stack. The structure further includes embedded stressor elements located on opposite sides of the at least one FET gate stack and within the semiconductor substrate.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Abhishek Dube, Judson R. Holt, Jeffrey B. Johnson, Jinghong Li, Dae-Gyu Park, Zhengmao Zhu
  • Publication number: 20120261717
    Abstract: Semiconductor structures are disclosed that include at least one FET gate stack located on a semiconductor substrate. The at least one FET gate stack includes source and drain extension regions located within the semiconductor substrate. A device channel is also present between the source and drain extension regions and beneath the at least one gate stack. Embedded stressor elements are located on opposite sides of the at least one FET gate stack and within the semiconductor substrate. Each stressor element includes a lower layer of a first epitaxy doped semiconductor material having a lattice constant that is different from a lattice constant of the semiconductor substrate and imparts a strain in the device channel, and an upper layer of a second epitaxy doped semiconductor material. At least one monolayer of dopant is located within the upper layer of each of the embedded stressor elements.
    Type: Application
    Filed: June 26, 2012
    Publication date: October 18, 2012
    Applicant: International Business Machines Corporation
    Inventors: Kevin K. Chan, Abhishek Dube, Judson R. Holt, Jinghong Li, Joseph S. Newbury, Viorel Ontalus, Dae-Gyu Park, Zhengmao Zhu
  • Publication number: 20120228639
    Abstract: A method includes forming a stressed Si layer in a trench formed in a stress layer deposited on a substrate. The stressed Si layer forms an active channel region of a device. The method further includes forming a gate structure in the active channel region formed from the stressed Si layer.
    Type: Application
    Filed: May 17, 2012
    Publication date: September 13, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Judson R. HOLT, Viorel C. ONTALUS, Keith H. TABAKMAN
  • Publication number: 20120228716
    Abstract: A structure including an NFET having an embedded silicon germanium (SiGe) plug in a channel of the NFET; a PFET having a SiGe channel; and a trench isolation between the NFET and the PFET, wherein the NFET and the PFET are devoid of SiGe epitaxial growth edge effects.
    Type: Application
    Filed: May 23, 2012
    Publication date: September 13, 2012
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC., ADVANCED MICRO DEVICES, INC.
    Inventors: Eric C. T. Harley, Judson R. Holt, Dominic J. Schepis, Michael D. Steigerwalt, Linda Black, Rick Carter
  • Publication number: 20120208337
    Abstract: A low energy surface is formed by a high temperature anneal of the surfaces of trenches on each side of a gate stack. The material of the semiconductor layer reflows during the high temperature anneal such that the low energy surface is a crystallographic surface that is at a non-orthogonal angle with the surface normal of the semiconductor layer. A lattice mismatched semiconductor material is selectively grown on the semiconductor layer to fill the trenches, thereby forming embedded lattice mismatched semiconductor material portions in source and drain regions of a transistor. The embedded lattice mismatched semiconductor material portions can be in-situ doped without increasing punch-through. Alternately, a combination of intrinsic selective epitaxy and ion implantation can be employed to form deep source and drain regions.
    Type: Application
    Filed: April 26, 2012
    Publication date: August 16, 2012
    Applicants: GLOBALFOUNDRIES INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian J. Greene, William K. Henson, Judson R. Holt, Michael D. Steigerwalt, Kuldeep Amarnath, Rohit Pal, Johan W. Weijtmans
  • Patent number: 8236660
    Abstract: Semiconductor structures are disclosed that have embedded stressor elements therein. The disclosed structures include at least one FET gate stack located on an upper surface of a semiconductor substrate. The at least one FET gate stack includes source and drain extension regions located within the semiconductor substrate at a footprint of the at least one FET gate stack. A device channel is also present between the source and drain extension regions and beneath the at least one gate stack. The structure further includes embedded stressor elements located on opposite sides of the at least one FET gate stack and within the semiconductor substrate. Each of the embedded stressor elements includes a lower layer of a first epitaxy doped semiconductor material having a lattice constant that is different from a lattice constant of the semiconductor substrate and imparts a strain in the device channel, and an upper layer of a second epitaxy doped semiconductor material located atop the lower layer.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: August 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Abhishek Dube, Judson R. Holt, Jinghong Li, Joseph S. Newbury, Viorel Ontalus, Dae-Gyu Park, Zhengmao Zhu
  • Patent number: 8232186
    Abstract: Methods of integrating reverse embedded silicon germanium (SiGe) on an NFET and SiGe channel on a PFET, and a related structure are disclosed. One method may include providing a substrate including an NFET area and a PFET area; performing a single epitaxial growth of a silicon germanium (SiGe) layer over the substrate; forming an NFET in the NFET area, the NFET including a SiGe plug in a channel thereof formed from the SiGe layer; and forming a PFET in the PFET area, the PFET including a SiGe channel formed from the SiGe layer. As an option, the SiGe layer over the PFET area may be thinned.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: July 31, 2012
    Assignees: International Business Machines Corporation, Globalfoundries
    Inventors: Eric C. T. Harley, Judson R. Holt, Dominic J. Schepis, Michael D. Steigerwalt, Linda Black, Rick Carter
  • Patent number: 8232172
    Abstract: Stress enhanced transistor devices and methods of fabricating the same are provided. In one embodiment, a transistor device comprises: a gate conductor disposed above a semiconductor substrate between a pair of dielectric spacers, wherein the semiconductor substrate comprises a channel region underneath the gate conductor and recessed regions on opposite sides of the channel region, wherein the recessed regions undercut the dielectric spacers to form undercut areas of the channel region; and epitaxial source and drain regions disposed in the recessed regions of the semiconductor substrate and extending laterally underneath the dielectric spacers into the undercut areas of the channel region.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Thomas N. Adam, Judson R. Holt, Thomas A. Wallner
  • Publication number: 20120181631
    Abstract: Various techniques for changing the workfunction of the substrate by using a SiGe channel which, in turn, changes the bandgap favorably for a p-type metal oxide semiconductor field effect transistors (pMOSFETs) are disclosed. In the various techniques, a SiGe film that includes a low doped SiGe region above a more highly doped SiGe region to allow the appropriate threshold voltage (Vt) for pMOSFET devices while preventing pitting, roughness and thinning of the SiGe film during subsequent cleans and processing is provided.
    Type: Application
    Filed: March 27, 2012
    Publication date: July 19, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Ashima B. Chakravarti, Michael P. Chudzik, Judson R. Holt, Dominic J. Schepis
  • Publication number: 20120181578
    Abstract: A method produces a transistor. The method forms a strain-producing layer on a base layer and then removes at least one portion of the strain-producing layer to create at least one opening in the strain-producing layer. This leaves first and second portions of the strain-producing layer on the substrate. The first and second portions of the strain-producing layer comprise source and drain stressor regions of the transistor. The method then grows a channel region in the opening of the strain-producing layer from the base layer, forms a gate insulator on the channel region, and forms a gate conductor on the gate insulator.
    Type: Application
    Filed: March 28, 2012
    Publication date: July 19, 2012
    Applicant: International Business Machines Corporation
    Inventors: Judson R. Holt, Viorel C. Ontalus, Keith H. Tabakman
  • Patent number: 8222673
    Abstract: A low energy surface is formed by a high temperature anneal of the surfaces of trenches on each side of a gate stack. The material of the semiconductor layer reflows during the high temperature anneal such that the low energy surface is a crystallographic surface that is at a non-orthogonal angle with the surface normal of the semiconductor layer. A lattice mismatched semiconductor material is selectively grown on the semiconductor layer to fill the trenches, thereby forming embedded lattice mismatched semiconductor material portions in source and drain regions of a transistor. The embedded lattice mismatched semiconductor material portions can be in-situ doped without increasing punch-through. Alternately, a combination of intrinsic selective epitaxy and ion implantation can be employed to form deep source and drain regions.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: July 17, 2012
    Assignees: International Business Machines Corporation, Globalfoundries Inc.
    Inventors: Brian J. Greene, William K. Henson, Judson R. Holt, Michael D. Steigerwalt, Kuldeep Amarnath, Rohit Pal, Johan W. Weijtmans
  • Patent number: 8216893
    Abstract: Stress enhanced transistor devices and methods of fabricating the same are disclosed. In one embodiment, a transistor device comprises: a gate conductor spaced above a semiconductor substrate by a gate dielectric, wherein the semiconductor substrate comprises a channel region underneath the gate conductor and recessed regions on opposite sides of the channel region, wherein the channel region comprises undercut areas under the gate conductor; a stressed material embedded in the undercut areas of the channel region under the gate conductor; and epitaxially grown source and drain regions disposed in the recessed regions of the semiconductor substrate laterally adjacent to the stressed material.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: July 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Johnathan E. Faltermeier, Judson R. Holt, Xuefeng Hua
  • Patent number: 8217423
    Abstract: While embedded silicon germanium alloy and silicon carbon alloy provide many useful applications, especially for enhancing the mobility of MOSFETs through stress engineering, formation of alloyed silicide on these surfaces degrades device performance. The present invention provides structures and methods for providing unalloyed silicide on such silicon alloy surfaces placed on semiconductor substrates. This enables the formation of low resistance contacts for both mobility enhanced PFETs with embedded SiGe and mobility enhanced NFETs with embedded Si:C on the same semiconductor substrate. Furthermore, this invention provides methods for thick epitaxial silicon alloy, especially thick epitaxial Si:C alloy, above the level of the gate dielectric to increase the stress on the channel on the transistor devices.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: July 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Yaocheng Liu, Dureseti Chidambarrao, Oleg Gluschenkov, Judson R Holt, Renee T Mo, Kern Rim
  • Publication number: 20120168775
    Abstract: A transistor device includes a gate conductor spaced above a semiconductor substrate by a gate dielectric, wherein the semiconductor substrate comprises a channel region underneath the gate conductor and recessed regions on opposite sides of the channel region, wherein the channel region comprises undercut areas under the gate conductor; a stressed material embedded in the undercut areas of the channel region under the gate conductor; and epitaxially grown source and drain regions disposed in the recessed regions of the semiconductor substrate laterally adjacent to the stressed material.
    Type: Application
    Filed: March 13, 2012
    Publication date: July 5, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Johnathan E. Faltermeier, Judson R. Holt, Xuefeng Hua
  • Publication number: 20120146092
    Abstract: While embedded silicon germanium alloy and silicon carbon alloy provide many useful applications, especially for enhancing the mobility of MOSFETs through stress engineering, formation of alloyed silicide on these surfaces degrades device performance. The present invention provides structures and methods for providing unalloyed silicide on such silicon alloy surfaces placed on semiconductor substrates. This enables the formation of low resistance contacts for both mobility enhanced PFETs with embedded SiGe and mobility enhanced NFETs with embedded Si:C on the same semiconductor substrate. Furthermore, this invention provides methods for thick epitaxial silicon alloy, especially thick epitaxial Si:C alloy, above the level of the gate dielectric to increase the stress on the channel on the transistor devices.
    Type: Application
    Filed: February 16, 2012
    Publication date: June 14, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yaocheng Liu, Dureseti Chidambarrao, Oleg Gluschenkov, Judson R. Holt, Renee T. Mo, Kern Rim