Patents by Inventor Judson R. Holt

Judson R. Holt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11502200
    Abstract: An illustrative transistor device disclosed herein includes a gate structure positioned around a portion of a fin defined in a semiconductor substrate and epitaxial semiconductor material positioned on the fin in a source/drain region of the transistor device, wherein the epitaxial semiconductor material has a plurality of lower angled surfaces. In this example, the device further includes a first sidewall spacer positioned adjacent the gate structure, wherein a first portion of the first sidewall spacer is also positioned on and in physical contact with at least a portion of the lower angled surfaces of the epitaxial semiconductor material.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: November 15, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Sipeng Gu, Judson R. Holt, Haiting Wang, Yanping Shen
  • Publication number: 20220336646
    Abstract: Aspects of the disclosure provide a bipolar transistor structure with an elevated extrinsic base, and related methods to form the same. A bipolar transistor according to the disclosure may include a collector on a substrate, and a base film on the collector. The base film includes a crystalline region on the collector and a non-crystalline region adjacent the crystalline region. An emitter is on a first portion of the crystalline region of the base film. An elevated extrinsic base is on a second portion of the crystalline region of the base film, and adjacent the emitter.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 20, 2022
    Inventors: Viorel C. Ontalus, Judson R. Holt
  • Patent number: 11448822
    Abstract: Disclosed is a silicon-on-insulator (SOI) chip structure with a substrate-embedded optical waveguide. Also disclosed is a method for forming the SOI chip structure. In the method, an optical waveguide is formed within a trench in a bulk substrate prior to a wafer bonding process that results in the SOI structure. Subsequently, front-end-of-the-line (FEOL) processing can be performed to form additional optical devices and/or electronic devices in and/or above the silicon layer. By embedding an optical waveguide within the substrate prior to wafer bonding as opposed to forming it during FEOL processing, strict limitations on the dimensions of the core layer of the optical waveguide are avoided. The core layer of the substrate-embedded optical waveguide can be relatively large such that the cut-off wavelength can be relatively long. Thus, such a substrate-embedded optical waveguide brings different functionality to the SOI chip structure as compared to FEOL optical waveguides.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: September 20, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Judson R. Holt, Yusheng Bian, Dali Shao
  • Patent number: 11424349
    Abstract: A lateral bipolar junction transistor (BJT) device includes: an emitter region, a collector region, and a base region, the base region positioned between and laterally separating the emitter region and the collector region, the base region including an intrinsic base region; and a cavity formed in a semiconductor substrate and filled with an insulating material, the cavity physically separating a lower surface of the intrinsic base region from the semiconductor substrate.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: August 23, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Arkadiusz Malinowski, Alexander M. Derrickson, Judson R. Holt
  • Publication number: 20220262931
    Abstract: A lateral bipolar junction transistor (BJT) device includes: an emitter region, a collector region, and a base region, the base region positioned between and laterally separating the emitter region and the collector region, the base region including an intrinsic base region; and a cavity formed in a semiconductor substrate and filled with an insulating material, the cavity physically separating a lower surface of the intrinsic base region from the semiconductor substrate.
    Type: Application
    Filed: February 17, 2021
    Publication date: August 18, 2022
    Inventors: Arkadiusz Malinowski, Alexander M. Derrickson, Judson R. Holt
  • Publication number: 20220262930
    Abstract: Device structures and fabrication methods for a bipolar junction transistor. The device structure includes a substrate and a trench isolation region in the substrate. The trench isolation region surrounds an active region of the substrate. The device structure further includes a collector in the active region of the substrate, a base layer having a first section positioned on the active region and a second section oriented at an angle relative to the first section, an emitter positioned on the first section of the base layer, and an extrinsic base layer positioned over the trench isolation region and adjacent to the emitter. The second section of the base layer is laterally positioned between the extrinsic base layer and the emitter.
    Type: Application
    Filed: February 16, 2021
    Publication date: August 18, 2022
    Inventors: Vibhor Jain, Judson R. Holt, Tayel Nesheiwat, John J. Pekarik, Christopher Durcan
  • Publication number: 20220196909
    Abstract: Disclosed is a silicon-on-insulator (SOI) chip structure with a substrate-embedded optical waveguide. Also disclosed is a method for forming the SOI chip structure. In the method, an optical waveguide is formed within a trench in a bulk substrate prior to a wafer bonding process that results in the SOI structure. Subsequently, front-end-of-the-line (FEOL) processing can be performed to form additional optical devices and/or electronic devices in and/or above the silicon layer. By embedding an optical waveguide within the substrate prior to wafer bonding as opposed to forming it during FEOL processing, strict limitations on the dimensions of the core layer of the optical waveguide are avoided. The core layer of the substrate-embedded optical waveguide can be relatively large such that the cut-off wavelength can be relatively long. Thus, such a substrate-embedded optical waveguide brings different functionality to the SOI chip structure as compared to FEOL optical waveguides.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Judson R. Holt, Yusheng Bian, Dali Shao
  • Patent number: 11329158
    Abstract: A structure for a field-effect transistor includes a semiconductor body, a first gate structure extending over the semiconductor body, and a second gate structure extending over the semiconductor body. A recess is in the semiconductor body between the first and second gate structures. A three part source/drain region includes a pair of spaced semiconductor spacers in the recess; a first semiconductor layer laterally between the pair of semiconductor spacers; and a second semiconductor layer over the first semiconductor layer. The pair of spaced semiconductor spacers, the first semiconductor layer and the second semiconductor layer may all have different dopant concentrations.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: May 10, 2022
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Halting Wang, Judson R. Holt, Sipeng Gu
  • Patent number: 11217685
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a device with a marker layer and methods of manufacture. The device includes: a collector region; an intrinsic base region above the collector region; an emitter region comprising emitter material and a marker layer vertically between the intrinsic base region and the emitter material; and an extrinsic base region in electrical contact with the intrinsic base region.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: January 4, 2022
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Herbert Ho, Vibhor Jain, John J. Pekarik, Claude Ortolland, Judson R. Holt, Qizhi Liu, Viorel Ontalus
  • Patent number: 11217584
    Abstract: A method limits lateral epitaxy growth at an N-P boundary area using an inner spacer. The method may include forming inner spacers on inner sidewalls of the inner active regions of a first polarity region (e.g., n-type) and an adjacent second polarity region (e.g., p-type) that are taller than any outer spacers on an outer sidewall of the inner active regions. During forming of semiconductor layers over the active regions (e.g., via epitaxy), the inner spacers abut and limit lateral forming of the semiconductor layers. The method generates larger semiconductor layers than possible with conventional approaches, and prevents electrical shorts between the semiconductor layers in an N-P boundary area. A structure includes the semiconductor epitaxy layers separated from one another, and abutting respective inner spacers. Any outer spacer on the inner active region is shorter than a respective inner spacer.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: January 4, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Judson R. Holt, Jiehui Shu
  • Publication number: 20210399126
    Abstract: An illustrative transistor device disclosed herein includes a gate structure positioned around a portion of a fin defined in a semiconductor substrate and epitaxial semiconductor material positioned on the fin in a source/drain region of the transistor device, wherein the epitaxial semiconductor material has a plurality of lower angled surfaces. In this example, the device further includes a first sidewall spacer positioned adjacent the gate structure, wherein a first portion of the first sidewall spacer is also positioned on and in physical contact with at least a portion of the lower angled surfaces of the epitaxial semiconductor material.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 23, 2021
    Inventors: Sipeng Gu, Judson R. Holt, Haiting Wang, Yanping Shen
  • Patent number: 11195925
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to heterojunction bipolar transistors and methods of manufacture. The structure includes: a sub-collector region in a substrate; a collector region above the sub-collector region, the collector region composed of semiconductor material; an intrinsic base region composed of intrinsic base material surrounded by the semiconductor material above the collector region; and an emitter region above the intrinsic base region.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: December 7, 2021
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Judson R. Holt, Vibhor Jain, Qizhi Liu, Ramsey Hazbun, Pernell Dongmo, John J. Pekarik, Cameron E. Luce
  • Patent number: 11177347
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to heterojunction bipolar transistors and methods of manufacture. The structure includes a collector region composed of semiconductor material; at least one marker layer over the collector region; a layer of doped semiconductor material which forms an extrinsic base and which is located above the at least one marker layer; a cavity formed in the layer of doped semiconductor material and extending at least to the at least one marker layer; an epitaxial intrinsic base layer of doped material located within the cavity; and an emitter material over the epitaxial intrinsic base layer and within an opening formed by sidewall spacer structures.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: November 16, 2021
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Judson R. Holt, Vibhor Jain, Qizhi Liu, John J. Pekarik
  • Patent number: 11150168
    Abstract: A device for isolating a microbe or a virion includes a semiconductor substrate; and a trench formed in the semiconductor substrate and extending from a surface of the semiconductor substrate to a region within the semiconductor substrate; wherein the trench has dimensions such that the microbe or the virion is trapped within the trench.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: October 19, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann Astier, David Esteban, Judson R. Holt, Henry K. Utomo
  • Publication number: 20210320207
    Abstract: A structure for a field-effect transistor includes a semiconductor body, a first gate structure extending over the semiconductor body, and a second gate structure extending over the semiconductor body. A recess is in the semiconductor body between the first and second gate structures. A three part source/drain region includes a pair of spaced semiconductor spacers in the recess; a first semiconductor layer laterally between the pair of semiconductor spacers; and a second semiconductor layer over the first semiconductor layer. The pair of spaced semiconductor spacers, the first semiconductor layer and the second semiconductor layer may all have different dopant concentrations.
    Type: Application
    Filed: April 8, 2020
    Publication date: October 14, 2021
    Inventors: Haiting Wang, Judson R. Holt, Sipeng Gu
  • Patent number: 11145725
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a heterojunction bipolar transistor and methods of manufacture. The structure includes: a sub-collector region; a collector region in electrical connection to the sub-collector region; an emitter located adjacent to the collector region and comprising emitter material, recessed sidewalls on the emitter material and an extension region extending at an upper portion of the emitter material above the recessed sidewalls; and an extrinsic base separated from the emitter by the recessed sidewalls.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: October 12, 2021
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Qizhi Liu, Vibhor Jain, Judson R. Holt, Herbert Ho, Claude Ortolland, John J. Pekarik
  • Patent number: 11127831
    Abstract: Embodiments of the disclosure provide a transistor structure and methods to form the same. The transistor structure may include an active semiconductor region with a channel region between a first source/drain (S/D) region and a second S/D region. A polysilicon gate structure is above the channel region of the active semiconductor region. An overlying gate is positioned on the polysilicon gate structure. A horizontal width of the overlying gate is greater than a horizontal width of the polysilicon gate structure. The transistor structure includes a gate contact to the overlying gate.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: September 21, 2021
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Qizhi Liu, Vibhor Jain, John J. Pekarik, Judson R. Holt
  • Patent number: 11094822
    Abstract: One illustrative transistor device disclosed herein includes a gate structure positioned above a semiconductor substrate and first and second overall cavities formed in the semiconductor substrate on opposite sides of the gate structure. In this example, each of the first and second overall cavities comprise a substantially vertically oriented upper epitaxial cavity and a lower insulation cavity, wherein the substantially vertically oriented upper epitaxial cavity extends from an upper surface of the semiconductor substrate to the lower insulation cavity. The transistor also includes an insulation material positioned in at least a portion of the lower insulation cavity of each of the first and second overall cavities and epitaxial semiconductor material positioned in at least the substantially vertically oriented upper epitaxial cavity of each of the first and second overall cavities.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: August 17, 2021
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Arkadiusz Malinowski, Baofu Zhu, Judson R. Holt, Shiv Kumar Mishra
  • Patent number: 11094834
    Abstract: A junction field effect transistor (JFET) structure includes a doped polysilicon gate over a channel region of a semiconductor layer. The doped polysilicon gate has a first doping type. A raised epitaxial source is on the source region of the semiconductor layer and adjacent a first sidewall of the doped polysilicon gate, and has a second doping type opposite the first doping type. A raised epitaxial drain is on the drain region of the semiconductor layer and adjacent a second sidewall of the doped polysilicon gate, and has the second doping type. A doped semiconductor region is within the channel region of the semiconductor layer and extending from the source region to the drain region, and a non-conductive portion of the semiconductor layer is within the channel region to separate the doped semiconductor region from the doped polysilicon gate.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: August 17, 2021
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Qizhi Liu, Vibhor Jain, John J. Pekarik, Judson R. Holt
  • Patent number: 11081583
    Abstract: A device and method for forming a semiconductor device includes forming a gate structure on a channel region of fin structures and forming a flowable dielectric material on a source region portion and a drain region portion of the fin structures. The flowable dielectric material is present at least between adjacent fin structures of the plurality of fin structures filling a space between the adjacent fin structures. An upper surface of the source region portion and the drain region portion of fin structures is exposed. An epitaxial semiconductor material is formed on the upper surface of the source region portion and the drain region portion of the fin structures.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: August 3, 2021
    Assignee: International Business Machines Corporation
    Inventors: Eric C. Harley, Judson R. Holt, Yue Ke, Rishikesh Krishnan, Keith H. Tabakman, Henry K. Utomo