Patents by Inventor Julie A. Thompson

Julie A. Thompson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9138199
    Abstract: A monitoring system senses a physiological signal indicative of mechanical vibrations including audible and/or subaudible frequency ranges and presents information related to the physiological signal to a user. The presented information includes subaudible components of the physiological signal. In various embodiments, the information can be presented as a visual signal representing the mechanical vibrations including the subaudible components, an audial signal representing the mechanical vibrations having a spectrum shifted to an audible frequency range, and/or an audial signal representing the mechanical vibrations having a spectrum compressed into an audible frequency range. An example of the physiological signal can include a heart sound signal indicative of heart sounds including cardiac mechanical vibrations in audible and subaudible frequency ranges.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: September 22, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Barun Maskara, Qi An, Pramodsingh Hirasingh Thakur, Julie A. Thompson
  • Patent number: 9138151
    Abstract: A hospitalization management system including a heart failure analyzer that receives diagnostic data including at least sensor data representative of one or more physiological signals sensed from a hospitalized patient using one or more sensors and assesses risk of rehospitalization for the patient using the diagnostic data. The outcome of the risk assessment is used during and following the patient's hospitalization for reducing the risk of rehospitalization.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: September 22, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ramesh Wariar, Jeffrey E. Stahmann, Julie A. Thompson, Helen L. Reeve-Stoffer
  • Patent number: 9138590
    Abstract: A CRM system enhances intracardiac electrogram-based arrhythmia detection using a wireless electrocardiogram (ECG), which is a signal sensed with implantable electrodes and approximating a surface ECG. In one embodiment, an intracardiac electrogram allows for detection of an arrhythmia, and the wireless ECG allows for classification of the detected arrhythmia by locating its origin. In another embodiment, the wireless ECG is sensed as a substitute signal for the intracardiac electrogram when the sensing of the intracardiac electrogram becomes unreliable. In another embodiment, a cardiac signal needed for a particular purpose is selected from one or more intracardiac electrograms and one or more wireless ECGs based on a desirable signal quality. In another embodiment, intracardiac electrogram-based arrhythmia detection and wireless ECG-based arrhythmia detection confirm with each other before indicating a detection of arrhythmia of a certain type.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: September 22, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yi Zhang, Aaron McCabe, David J. Yonce, Julie Thompson
  • Publication number: 20150250428
    Abstract: Systems and methods for detecting a present, or predicting a future, target physiologic event such as worsening heart failure (HF) are described. A system can comprise a patient information receiver circuit, at least two categorical risk analyzer circuits, and a categorical fusion circuit. The patient information receiver circuit receives physiologic signals and generates signal trends. The categorical risk analyzer circuit receives a category-specific input selected from the signal trends according to an associative physiologic condition indicative or correlative of the target event. The categorical risk analyzer circuit produces a signal trend metric indicating relative change in signal strength over time. The categorical risk analyzer circuit calculates a categorical risk index that indicates likelihood of the patient developing or presenting the associative physiologic condition.
    Type: Application
    Filed: March 4, 2015
    Publication date: September 10, 2015
    Inventors: Yi Zhang, Pramodsingh Hirasingh Thakur, Qi An, Julie A. Thompson, Ramesh Wariar, Robert J. Sweeney
  • Patent number: 9101275
    Abstract: Systems and methods are provided for using information from a subject heart sound signal and information from a subject physiological pulsatile signal to identify subject systolic time intervals. An example system for identifying systolic time intervals includes a heart sound detector circuit, configured to detect a subject heart sound signal using an acoustic signal. The system can include a physiological signal sensing circuit configured to detect a physiological pulsatile signal, including at least one of a pulsatile cervical impedance signal or a pulsatile pulmonary artery pressure signal. A timing circuit can be configured to calculate a systolic time interval between a feature on the heart sound signal and a feature on the pulsatile signal. A subject physiologic diagnostic indication can be provided using information from the timing circuit about the systolic time interval.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: August 11, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Qi An, Barun Maskara, Julie A. Thompson
  • Publication number: 20150157221
    Abstract: Devices and methods for detecting heart failure (HF) events or identifying patient at elevated risk of developing future HF events, such as events indicative of HF decompensation status, are described. The devices and methods can detect an HF event or predict HF risk using signal transfigurations on different portions of a physiologic signal. A system can comprise a physiologic signal analyzer circuit that can generate a signal trend of a signal feature calculated using one or more physiologic signals obtained from a patient. A signal transformation circuit can dynamically generates first and second transformations, apply the transformations to respective first and second portions of the signal trend, and generate respectively a first and second transformed signal trends. A target physiologic event detector circuit can detect a target physiologic event such as an event of worsening HF using a comparison of the first and second transformed signal trends.
    Type: Application
    Filed: November 20, 2014
    Publication date: June 11, 2015
    Inventors: Qi An, Pramodsingh Hirasingh Thakur, Viktoria A. Averina, Julie A. Thompson, Robert J. Sweeney
  • Publication number: 20150141953
    Abstract: An apparatus comprises one or more physiological sensing circuits that generate a sensed physiological signal and at least one of the physiological sensing circuits is implantable, a measurement circuit configured to recurrently measure one or more physiological parameters that indicate a status of heart failure of the subject, a comparison circuit configured to compare the one or more physiological parameter measurements to one or more physiological parameter target values, a therapy circuit configured to control delivery of one or more drugs to treat heart failure, and a control circuit in electrical communication with the comparison circuit and the therapy circuit and configured to recurrently adjust delivery of drug therapy according to the comparison of the measured physiological parameters to the physiological parameter targets.
    Type: Application
    Filed: January 26, 2015
    Publication date: May 21, 2015
    Inventors: Ramesh Wariar, Baru Maskara, Qi An, Pramodsingh Hirasingh Thakur, Julie A. Thompson
  • Patent number: 8972002
    Abstract: An apparatus comprises one or more physiological sensing circuits that generate a sensed physiological signal and at least one of the physiological sensing circuits is implantable, a measurement circuit configured to recurrently measure one or more physiological parameters that indicate a status of heart failure of the subject, a comparison circuit configured to compare the one or more physiological parameter measurements to one or more physiological parameter target values, a therapy circuit configured to control delivery of one or more drugs to treat heart failure, and a control circuit in electrical communication with the comparison circuit and the therapy circuit and configured to recurrently adjust delivery of drug therapy according to the comparison of the measured physiological parameters to the physiological parameter targets.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: March 3, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ramesh Wariar, Barun Maskara, Qi An, Pramodsingh Hirasingh Thakur, Julie A. Thompson
  • Patent number: 8951203
    Abstract: Systems and methods include obtaining a measure of cardiac contractility. A cardiac contractility variability is determined from the measure of cardiac contractility. Analyzing the cardiac contractility variability, an indication of cardio-vasculature health is provided.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: February 10, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Abhilash Patangay, Yi Zhang, Aaron Lewicke, Julie A. Thompson
  • Publication number: 20140277237
    Abstract: A system may include an external medical device (e.g., a patch) including one or more physiological sensors configured to sense one or more physiological parameters of a subject when the subject is ambulatory. The external medical device may be configured to communicate information related to the sensed one or more physiological parameters for determining and/or modifying at least one cardiac therapy parameter of an implantable medical device (e.g., pacemaker, implantable cardioverter defibrillators, or cardiac resynchronization therapy device). In some situations, an indication or notification may be generated corresponding to the determined and/modified cardiac therapy parameter.
    Type: Application
    Filed: February 24, 2014
    Publication date: September 18, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Barun Maskara, Qi An, Pramodsingh Hirasingh Thakur, Julie A. Thompson
  • Publication number: 20140277238
    Abstract: Devices and methods for improving device therapy such as cardiac resynchronization therapy (CRT) by determining a desired value for a device parameter are described. An ambulatory medical device can be configured to detect a heart sound signal and generate one or more heart sound metrics, detect a characteristic indicative of cannon waves, and determine a desired value for a device parameter, such as a timing parameter which can be used to control the delivery of CRT pacing to various heart chambers. The desired device parameter value can be determined using the heart sound metrics and the characteristic indicative of the cannon waves. The ambulatory medical device can program stimulation using the desired device parameter value, and deliver the programmed stimulations to one or more target sites to achieve desired therapeutic effects.
    Type: Application
    Filed: March 3, 2014
    Publication date: September 18, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Qi An, Barun Maskara, Pramodsingh Hirasingh Thakur, Julie A. Thompson
  • Publication number: 20140276164
    Abstract: Systems and methods are described for subject rehospitalization management. In an example, multiple physiologic signals can be obtained from a subject using multiple sensors. In response to a hospitalization event, pre-hospitalization characteristics of the multiple physiologic signals can be identified. Post-hospitalization characteristics of the multiple physiologic signals can be identified, including characteristics that differ from their corresponding pre-hospitalization characteristics. Later subsequent physiologic signals can be further monitored after the hospitalization event, such as using the same multiple sensors, and subsequent physiologic signal characteristics can be identified. In an example, a heart failure diagnostic indication can be determined using information about the pre-hospitalization characteristics, the post-hospitalization characteristics, and the subsequent characteristics.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 18, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Qi An, Barun Maskara, Julie A. Thompson
  • Publication number: 20140277240
    Abstract: Pacing parameters may be adjusted to increase the cardiac output of a patient's heart while a patient is awake and/or active and the demand placed on the heart may be greatest, and to decrease or hemodynamic efficiency while a patient is at rest so that the heart itself has time to rest before the next period of higher demand for efficiency begins. This may aid in lessening the strain placed on the heart by making the heart work hard when needed such as when the patient is active, and by permitting the heart to “rest” when the patient is relatively inactive.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Barun Maskara, Qi An, Pramodsingh Thakur, Julie Thompson
  • Publication number: 20140277239
    Abstract: Stimulation energy can be provided to stimulate synchronous ventricular contractions. Interval information obtained from a cardiac electrical heart signal and a cardiac mechanical heart signal can be used to determine a right ventricular activation time. The interval information can provide a cardiac stimulation indication.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Barun Maskara, Qi An, Pramodsingh Hirasingh Thakur, Julie A. Thompson
  • Publication number: 20140275925
    Abstract: Systems and methods are provided for using information from a subject heart sound signal and information from a subject physiological pulsatile signal to identify subject systolic time intervals. An example system for identifying systolic time intervals includes a heart sound detector circuit, configured to detect a subject heart sound signal using an acoustic signal. The system can include a physiological signal sensing circuit configured to detect a physiological pulsatile signal, including at least one of a pulsatile cervical impedance signal or a pulsatile pulmonary artery pressure signal. A timing circuit can be configured to calculate a systolic time interval between a feature on the heart sound signal and a feature on the pulsatile signal. A subject physiologic diagnostic indication can be provided using information from the timing circuit about the systolic time interval.
    Type: Application
    Filed: February 25, 2014
    Publication date: September 18, 2014
    Applicant: Cardiac Pacemaker, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Qi An, Barun Maskara, Julie A. Thompson
  • Publication number: 20140277235
    Abstract: Devices and methods for improving device therapy such as cardiac resynchronization therapy (CRT) by determining a desired value for a device parameter are described. An ambulatory medical device can receive one or more physiologic signals and generate multiple signal metrics from the physiologic signals. The ambulatory medical device can determine a desired value for a device parameter, such as a timing parameter used for controlling the delivery of CRT pacing to various heart chambers, using information fusion of signal metrics that are selected based on one or more of a signal metric sensitivity to perturbations to the device parameter in response to a stimulation, a signal metric variability in response to a stimulation, or a covariability between two or more signal metrics in response to a stimulation. The ambulatory medical device can program a stimulation using the desired device parameter value, and deliver the programmed stimulation to one or more target sites to achieve desired therapeutic effects.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 18, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Qi An, Barun Maskara, Pramodsingh Hirasingh Thakur, Julie A. Thompson
  • Publication number: 20140277243
    Abstract: An apparatus may include an implantable therapy circuit that provides bi-ventricular pacing to a subject, a heart sound signal sensing circuit that produces a sensed heart sound signal that is representative of at least one heart sound associated with mechanical cardiac activity, a memory circuit to store one or more heart sound templates of cardiac capture, and a comparison circuit that compares a segment of the sensed heart sound signal to the one or more heart sound templates of cardiac capture to identify ventricles in which cardiac capture was induced by the bi-ventricular pacing. In some situations, an indication of the ventricles in which cardiac capture was induced may be generated according to the comparison.
    Type: Application
    Filed: February 24, 2014
    Publication date: September 18, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Barun Maskara, Qi An, Pramodsingh Hirasingh Thakur, Julie A. Thompson
  • Publication number: 20140221786
    Abstract: An apparatus comprises plurality of sensors and a processor. Each sensor provides a sensor signal that includes physiological information and at least one sensor is implantable. The processor includes a physiological change event detection module that detects a physiological change event from a sensor signal and produces an indication of occurrence of one or more detected physiological change events, and a heart failure (HF) detection module. The HF detection module determines, using a first rule, whether the detected physiological change event is indicative of a change in HF status of a subject, determines whether to override the first rule HF determination using a second rules, and declares whether the change in HF status occurred according to the first and second rules.
    Type: Application
    Filed: April 9, 2014
    Publication date: August 7, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Yi Zhang, Jeffrey E. Stahmann, Krzysztof Z. Siejko, Ramesh Wariar, Julie A. Thompson, John D. Hatlestad, Kenneth C. Beck
  • Patent number: 8768444
    Abstract: An implantable medical device senses a plurality of electrograms from substantially different atrial locations, detects regional depolarizations from the electrograms, and analyzes timing relationships among the regional depolarizations. The timing relationships provide a basis for effective therapy control and/or prognosis of certain cardiac disorders. In one embodiment, an atrial activation sequence is mapped to show the order of occurrences of the regional depolarizations during an atrial depolarization for classifying a detected tachyarrhythmia by its origin. In another embodiment, conduction time between two atrial locations is measured for monitoring the development of an abnormal atrial conditions and/or the effect of a therapy.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: July 1, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yunlong Zhang, Julie A. Thompson, James O. Gilkerson, Yongxing Zhang
  • Publication number: 20140155762
    Abstract: A monitoring system senses a physiological signal indicative of mechanical vibrations including audible and/or subaudible frequency ranges and presents information related to the physiological signal to a user. The presented information includes subaudible components of the physiological signal. In various embodiments, the information can be presented as a visual signal representing the mechanical vibrations including the subaudible components, an audial signal representing the mechanical vibrations having a spectrum shifted to an audible frequency range, and/or an audial signal representing the mechanical vibrations having a spectrum compressed into an audible frequency range. An example of the physiological signal can include a heart sound signal indicative of heart sounds including cardiac mechanical vibrations in audible and subaudible frequency ranges.
    Type: Application
    Filed: November 19, 2013
    Publication date: June 5, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Barun Maskara, Qi An, Pramodsingh Hirasingh Thakur, Julie A. Thompson