Patents by Inventor Jung-Chih Tsao

Jung-Chih Tsao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240051085
    Abstract: An apparatus for monitoring a CMP process on a wafer includes vibration sensors to collect vibration data corresponding to the CMP process and to transmit electric signals, a signal processor to obtain digital signals by converting the electric signals into a frequency domain, and filters to filter out noise signals from the digital signals to obtain noise reduced digital signals. The signal processor obtains one or more frequency spectrums from the noise reduced digital signals, and determines a micro-scratch occurrence on the wafer by analyzing the obtained one or more frequency spectrums. The vibration sensors are in rigid contact with at least a tool such as a head holding a carrier of the wafer or a platen holding a polishing pad. Each vibration sensor includes at least two sub-frequency-ranges respectively corresponding to at least two materials to be polished by the polishing pad.
    Type: Application
    Filed: August 11, 2022
    Publication date: February 15, 2024
    Inventors: Jun-Nan NIAN, Jung-Chih TSAO
  • Patent number: 11854980
    Abstract: A method of forming a semiconductor device, comprising: forming a first conductive layer on an active device of a substrate; forming a dielectric layer on the first conductive layer; forming a through hole passing through the dielectric layer to expose a portion of the first conductive layer; conformally depositing a glue layer in the through hole to cover the portion of the first conductive layer comprising: forming a plurality of isolated lattices in an amorphous region at which the isolated lattices are uniformly distributed and extend from a top surface of the glue layer and terminate prior to reach a bottom of the glue layer, wherein the glue layer has a predetermined thickness; depositing a conductive material on the glue layer within the through hole, thereby forming a contact via; and forming a second conductive layer on the contact via over the first conductive layer.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Ming Lu, Jung-Chih Tsao, Yao-Hsiang Liang, Chih-Chang Huang, Han-Chieh Huang
  • Patent number: 11769669
    Abstract: The semiconductor device includes a semiconductor fin, and a gate stack over the semiconductor fin. The gate stack includes a gate dielectric layer over a channel region of the semiconductor fin, a work function material layer over the gate dielectric layer, wherein the work function material layer includes dopants, and a gate electrode layer over the work function material layer. The gate dielectric layer is free of the dopants.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: September 26, 2023
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., TSMC NANJING COMPANY, LIMITED
    Inventors: Min Han Hsu, Jung-Chih Tsao
  • Publication number: 20220415959
    Abstract: A method of fabricating a semiconductor device includes forming a first film having a first film stress type and a first film stress intensity over a substrate and forming a second film having a second film stress type and a second film stress intensity over the first film. The second film stress type is different than the first film stress type. The second film stress intensity is about same as the first film stress intensity. The second film compensates stress induced effect of non-flatness of the substrate by the first film.
    Type: Application
    Filed: July 7, 2022
    Publication date: December 29, 2022
    Inventors: Chi-Ming LU, Chih-Hui HUANG, Sheng-Chan LI, Jung-Chih TSAO, Yao-Hsiang LIANG
  • Publication number: 20220384253
    Abstract: A method includes depositing a metallic hardmask over a dielectric layer. The method further includes etching a metallic hardmask opening in the metallic hardmask to expose a top surface of the dielectric layer. The method further includes modifying a sidewall of the metallic hardmask opening by adding non-metal atoms into the metallic hardmask. The method further includes depositing a conductive material in the metallic hardmask opening.
    Type: Application
    Filed: July 29, 2022
    Publication date: December 1, 2022
    Inventors: Min Han HSU, Chun-Chang CHEN, Jung-Chih TSAO
  • Publication number: 20220384195
    Abstract: A method of fabricating a semiconductor device includes forming a dummy gate structure over a semiconductor fin. The dummy gate structure includes a dummy gate stack and gate spacers along sidewalls of the dummy gate stack. The method further includes forming an inter-layer dielectric (ILD) layer surrounding the dummy gate structure, removing the dummy gate stack to provide an opening exposing a channel region of the semiconductor fin, depositing a gate dielectric layer over bottom and sidewalls of the opening and over the ILD layer, forming a doped work function material layer over the gate dielectric layer using an in-situ doping process, and depositing a gate electrode layer over the doped work function material layer.
    Type: Application
    Filed: August 10, 2022
    Publication date: December 1, 2022
    Inventors: Min Han HSU, Jung-Chih TSAO
  • Publication number: 20220359607
    Abstract: A method of forming a deep trench isolation in a radiation sensing substrate includes: forming a trench in the radiation sensing substrate; forming a corrosion resistive layer in the trench, in which the corrosion resistive layer includes titanium carbon nitride having a chemical formula of TiCxN(2-x), and x is in a range of 0.1 to 0.9; and filling a reflective material in the trench and over the corrosion resistive layer.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 10, 2022
    Inventors: Chi-Ming LU, Chih-Hui HUANG, Jung-Chih TSAO, Yao-Hsiang LIANG, Chih-Chang HUANG, Ching-Ho HSU
  • Patent number: 11450557
    Abstract: A method of making a dual damascene interconnect includes operations of depositing a metal hardmask over a dielectric layer; etching a metal hardmask opening in the metal hardmask to expose a top surface of the dielectric layer; etching at least one interconnect opening in the dielectric layer, to expose a top surface of a base conductive layer; modifying a sidewall of the metal hardmask opening; and depositing a conductive material in the metal hardmask opening and the at least one interconnect opening.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: September 20, 2022
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., TSMC NANJING COMPANY, LIMITED
    Inventors: Min Han Hsu, Chun-Chang Chen, Jung-Chih Tsao
  • Patent number: 11417700
    Abstract: Some embodiments of the present disclosure provide a back side illuminated (BSI) image sensor. The back side illuminated (BSI) image sensor includes a semiconductive substrate and an interlayer dielectric (ILD) layer at a front side of the semiconductive substrate. The ILD layer includes a dielectric layer over the semiconductive substrate and a contact partially buried inside the semiconductive substrate. The contact includes a silicide layer including a predetermined thickness proximately in a range from about 600 angstroms to about 1200 angstroms.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: August 16, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chih-Chang Huang, Chi-Ming Lu, Jian-Ming Chen, Jung-Chih Tsao, Yao-Hsiang Liang
  • Patent number: 11404470
    Abstract: A method of forming a deep trench isolation in a radiation sensing substrate includes: forming a trench in the radiation sensing substrate; forming a corrosion resistive layer in the trench, in which the corrosion resistive layer includes titanium carbon nitride having a chemical formula of TiCxN(2-x), and x is in a range of 0.1 to 0.9; and filling a reflective material in the trench and over the corrosion resistive layer.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: August 2, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi-Ming Lu, Chih-Hui Huang, Jung-Chih Tsao, Yao-Hsiang Liang, Chih-Chang Huang, Ching-Ho Hsu
  • Patent number: 11387274
    Abstract: A method of fabricating a semiconductor device includes forming a first film having a first film stress type and a first film stress intensity over a substrate and forming a second film having a second film stress type and a second film stress intensity over the first film. The second film stress type is different than the first film stress type. The second film stress intensity is about same as the first film stress intensity. The second film compensates stress induced effect of non-flatness of the substrate by the first film.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: July 12, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi-Ming Lu, Chih-Hui Huang, Sheng-Chan Li, Jung-Chih Tsao, Yao-Hsiang Liang
  • Publication number: 20220005697
    Abstract: The semiconductor device includes a semiconductor fin, and a gate stack over the semiconductor fin. The gate stack includes a gate dielectric layer over a channel region of the semiconductor fin, a work function material layer over the gate dielectric layer, wherein the work function material layer includes dopants, and a gate electrode layer over the work function material layer. The gate dielectric layer is free of the dopants.
    Type: Application
    Filed: February 2, 2021
    Publication date: January 6, 2022
    Inventors: Min Han HSU, Jung-Chih TSAO
  • Publication number: 20210210378
    Abstract: A method of making a dual damascene interconnect includes operations of depositing a metal hardmask over a dielectric layer; etching a metal hardmask opening in the metal hardmask to expose a top surface of the dielectric layer; etching at least one interconnect opening in the dielectric layer, to expose a top surface of a base conductive layer; modifying a sidewall of the metal hardmask opening; and depositing a conductive material in the metal hardmask opening and the at least one interconnect opening.
    Type: Application
    Filed: February 26, 2020
    Publication date: July 8, 2021
    Inventors: Min Han HSU, Chun-Chang CHEN, Jung-Chih TSAO
  • Publication number: 20200402916
    Abstract: A method of forming a semiconductor device, comprising: forming a first conductive layer on an active device of a substrate; forming a dielectric layer on the first conductive layer; forming a through hole passing through the dielectric layer to expose a portion of the first conductive layer; conformally depositing a glue layer in the through hole to cover the portion of the first conductive layer comprising: forming a plurality of isolated lattices in an amorphous region at which the isolated lattices are uniformly distributed and extend from a top surface of the glue layer and terminate prior to reach a bottom of the glue layer, wherein the glue layer has a predetermined thickness; depositing a conductive material on the glue layer within the through hole, thereby forming a contact via; and forming a second conductive layer on the contact via over the first conductive layer.
    Type: Application
    Filed: September 3, 2020
    Publication date: December 24, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi-Ming LU, Jung-Chih TSAO, Yao-Hsiang LIANG, Chih-Chang HUANG, Han-Chieh HUANG
  • Patent number: 10867889
    Abstract: A method of manufacturing a semiconductor structure includes receiving a substrate including a first side and a second side opposite to the first side; forming a recess extending between the first side and the second side; and disposing a conductive material in the recess to form a conductive via, wherein the conductive via includes an interface, a first portion adjacent to the first side and a second portion adjacent to the second side, the interface is disposed between the first portion and the second portion, an average grain size of the first portion is substantially different from an average grain size of the second portion.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Li-Yen Fang, Chih-Chang Huang, Jung-Chih Tsao, Yao-Hsiang Liang, Yu-Ku Lin
  • Publication number: 20200373345
    Abstract: Some embodiments of the present disclosure provide a back side illuminated (BSI) image sensor. The back side illuminated (BSI) image sensor includes a semiconductive substrate and an interlayer dielectric (ILD) layer at a front side of the semiconductive substrate. The ILD layer includes a dielectric layer over the semiconductive substrate and a contact partially buried inside the semiconductive substrate. The contact includes a silicide layer including a predetermined thickness proximately in a range from about 600 angstroms to about 1200 angstroms.
    Type: Application
    Filed: August 10, 2020
    Publication date: November 26, 2020
    Inventors: CHIH-CHANG HUANG, CHI-MING LU, JIAN-MING CHEN, JUNG-CHIH TSAO, YAO-HSIANG LIANG
  • Patent number: 10840330
    Abstract: A method includes method includes forming a dummy gate stack over a semiconductor substrate, wherein the semiconductor substrate is comprised in a wafer, removing the dummy gate stack to form a recess, forming a gate dielectric layer in the recess, and forming a metal layer in the recess and over the gate dielectric layer. The metal layer has an n-work function. A block layer is deposited over the metal layer using Atomic Layer Deposition (ALD). The remaining portion of the recess is filled with metallic materials, wherein the metallic materials are overlying the metal layer.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: November 17, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung-Chih Tsao, Chi-Cheng Hung, Yu-Sheng Wang, Wen-Hsi Lee, Kei-Wei Chen, Ying-Lang Wang
  • Patent number: 10796996
    Abstract: A semiconductor device includes a substrate, a dielectric layer disposed on the substrate, and a conductive stack disposed within the dielectric layer. The conductive stack includes at least one first conductive layer, a second conductive layer disposed over the at least one first conductive layer, and a contact structure disposed between the at least one first conductive layer and the second conductive layer. The contact structure includes a contact via electrically connecting the at least one first conductive layer to the second conductive layer, and a glue layer conformal to sidewalls and a bottom surface of the contact via. The glue layer has isolated lattices and an amorphous region at which the isolated lattices are uniformly distributed.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: October 6, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi-Ming Lu, Jung-Chih Tsao, Yao-Hsiang Liang, Chih-Chang Huang, Han-Chieh Huang
  • Patent number: 10741601
    Abstract: Some embodiments of the present disclosure provide a back side illuminated (BSI) image sensor. The back side illuminated (BSI) image sensor includes a semiconductive substrate and an interlayer dielectric (ILD) layer at a front side of the semiconductive substrate. The ILD layer includes a dielectric layer over the semiconductive substrate and a contact partially buried inside the semiconductive substrate. The contact includes a silicide layer including a predetermined thickness proximately in a range from about 600 angstroms to about 1200 angstroms.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: August 11, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chih-Chang Huang, Chi-Ming Lu, Jian-Ming Chen, Jung-Chih Tsao, Yao-Hsiang Liang
  • Publication number: 20200119081
    Abstract: A method of forming a deep trench isolation in a radiation sensing substrate includes: forming a trench in the radiation sensing substrate; forming a corrosion resistive layer in the trench, in which the corrosion resistive layer includes titanium carbon nitride having a chemical formula of TiCxN(2-x), and x is in a range of 0.1 to 0.9; and filling a reflective material in the trench and over the corrosion resistive layer.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Inventors: Chi-Ming LU, Chih-Hui HUANG, Jung-Chih TSAO, Yao-Hsiang LIANG, Chih-Chang HUANG, Ching-Ho HSU