Patents by Inventor Jung-Chuan Chou

Jung-Chuan Chou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7009376
    Abstract: A SnO2 ISFET device and manufacturing method thereof. The present invention prepares SnO2 as the detection membrane of an ISFET by sol-gel technology to obtain a SnO2 ISFET. The present invention also measures the current-voltage curve for different pH and temperatures by a current measuring system. The temperature parameter of the SnO2 ISFET is calculated according to the relationship between the current-voltage curve and temperature. In addition, the drift rate of the SnO2 ISFET for different pH and hysteresis width of the SnO2 ISFET for different pH loop are calculated by a constant voltage/current circuit and a voltage-time recorder to measure the gate voltage of the SnO2 ISFET.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: March 7, 2006
    Assignee: National Yunlin University of Science and Technology
    Inventors: Jung-Chuan Chou, Yii Fang Wang
  • Publication number: 20060046375
    Abstract: Methods for fabricating ion sensitive field effect transistors (ISFETs) with SnO2 extended gates. A SnO2 detection film is formed on a substrate by sol-gel technology to serve as an extended gate. The SnO2 detection film is electrically connected to a conductive wire, and an insulating layer is formed on the surface of the ISFET but part of the SnO2 detection film and the conductive wire are left exposed. The exposed conductive wire is electrically connected to a gate terminal of a MOS transistor.
    Type: Application
    Filed: December 7, 2004
    Publication date: March 2, 2006
    Inventors: Jung-Chuan Chou, Zhi Chen, Shih Liu
  • Publication number: 20060040420
    Abstract: A PbTiO3/SiO2-gated ISFET device comprising a PbTiO3 thin film as H+-sensing film, and a method of forming the same. The PbTiO3 thin film is formed through a sol-gel process which offers many advantages, such as, low processing temperature, easy control of the composition of the film and easy coating over a large substrate. The PbTiO3/SiO2 gated ISFET device of the present invention is highly sensitive in aqueous solution, and particularly in acidic aqueous solution. The sensitivity of the present ISFET ranges from 50 to 58 mV/pH. In addition, the disclosed ISFET has high linearity. Accordingly, the disclosed ISFET can be used to detect effluent.
    Type: Application
    Filed: October 21, 2005
    Publication date: February 23, 2006
    Inventors: Jung-Chuan Chou, Wen Liu, Wen Hong
  • Publication number: 20060029994
    Abstract: A penicillin G biosensor, systems comprising the same, and measurement using the systems. The penicillin G biosensor has an extended gate field effect transistor (EGFET) structure and comprises a metal oxide semiconductor field effect transistor (MOSFET) on a semiconductor substrate, a sensing unit comprising a substrate, a tin oxide film on the substrate, and a penicillin G acylase film immobilized on the tin oxide film, and a conductive wire connecting the MOSFET and the sensing unit.
    Type: Application
    Filed: December 30, 2004
    Publication date: February 9, 2006
    Applicant: National Yunlin University of Science and Technology
    Inventors: Jung-Chuan Chou, Chin-Hsien Yen, Yi-Ting Lai
  • Publication number: 20060021874
    Abstract: In this present invention it was fabricated to be relates to manufacturing a ceramic interface electrochemical reference electrode for use together with biomedical sensors. Most potentiometric biomedical sensors must have the need to be connected to a reference electrode to offer the readout circuit a stable voltage in the different solutions when measuring for providing that can provide a standard comparing voltage to avoid measuring errors caused by an unstable environment. Usually, However, the presently available commercial reference electrode we used is too big in size and inconvenient to store. For this reason we develop the ceramic interface electrochemical reference electrode which can minimize volume and need not to be preserved in the saturated solution for biosensor. Therefore, the ceramic interface electrochemical reference electrode of the present invention does not need to be stored in solution and can be minimized for use in future sensors.
    Type: Application
    Filed: May 26, 2005
    Publication date: February 2, 2006
    Inventors: Shen-Kan Hsiung, Jung-Chuan Chou, Tai-Ping Sun, Chung-We Pan, Zheng-Cheng Chen
  • Publication number: 20060011951
    Abstract: A potassium/sodium ion sensing device applying an extended-gate field effect transistor, which using an extended-gate ion sensitive field effect transistor (EGFET) as base to fabricate a potassium/sodium ion sensing device, using the extended gate of the extended-gate ion sensitive field effect transistor as a signal intercept electrode, and immobilizing the hydro-aliphatic urethane diacrylate (EB2001) intermixed with electronegative additive, potassium ionophore, sodium ionophore, and the like, to fabricate a potassium/sodium ion sensing electrode. The present invention utilizes the photocurability and good hydrophilicity of the hydro-aliphatic urethane diacrylate (EB2001), and fixes potassium/sodium ionophore, can obtain a non-wave filter, single-layer, stable signal potassium and sodium ion sensor.
    Type: Application
    Filed: July 15, 2004
    Publication date: January 19, 2006
    Applicant: Chung Yuan Christian University
    Inventors: Shen-Kan Hsiung, Jung-Chuan Chou, Tai-Ping Sun, Chung-We Pan, I-Kone Kao
  • Patent number: 6974716
    Abstract: A method for fabricating a titanium nitride (TiN) sensing membrane on an extended gate field effect transistor (EGFET). The method comprises the steps of depositing a layer of aluminum on a gate terminal of the EGFET using thermal evaporation and forming the TiN sensing membrane on an exposed part of the layer of aluminum in the sensitive window as an ion sensitive sensor (pH sensor) using a radio frequency (RF) sputtering process. Because TiN is suitable for use in a standard CMOS process, all the elements in the sensing device can be mass produced and offer the benefits of low cost, high yield, and high performance.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: December 13, 2005
    Assignee: Chung Yuan Christian University
    Inventors: Stephen S. K. Hsiung, Jung-Chuan Chou, Tai-Ping Sun, Wen-Yaw Chung, Yuan-Lung Chin, Lei Zhen Ce
  • Patent number: 6963193
    Abstract: An a-C:H ISFET device and manufacturing method thereof. The present invention prepares a-C:H as the detection membrane of an ISFET by plasma enhanced low pressure chemical vapor deposition (PE-LPCVD) to obtain an a-C:H ISFET. The present invention also measures the current-voltage curve for different pH and temperatures by a current measuring system. The temperature parameter of the a-C:H ISFET is calculated according to the relationship between the current-voltage curve and temperature. In addition, the drift rates of the a-C:H ISFET for different pH and hysteresis width of the a-C:H ISFET for different pH loops are calculated by a constant voltage/current circuit and a voltage-time recorder to measure the gate voltage of the a-C:H ISFET.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: November 8, 2005
    Assignee: National Yunlin University of Science and Technology
    Inventors: Jung-Chuan Chou, Hsuan-Ming Tsai
  • Publication number: 20050221594
    Abstract: A method of manufacturing a titanium dioxide (TiO2) thin film, used as the sensing film of the ISFET, prepared on the gate oxide by sputtering deposition. It also utilizes current/voltage measuring system to measure the current-voltage curves for the different pH values and temperatures. From the relationship of the current-voltage curves and temperatures, the temperature parameter of the TiO2 gate pH-ISFET can be calculated. In addition, it also uses a constant voltage/current circuit and a voltage-time recorder to measure the output voltage of the TiO2 gate pH-ISFET, the drift rates for the different pH values and hysteresis for different pH loops are calculated.
    Type: Application
    Filed: June 10, 2004
    Publication date: October 6, 2005
    Inventors: Jung-Chuan Chou, Sung-Po Liao
  • Publication number: 20050179065
    Abstract: A PbTiO3/SiO2-gated ISFET device comprising a PbTiO3 thin film as H+-sensing film, and a method of forming the same. The PbTiO3 thin film is formed through a sol-gel process which offers many advantages, such as, low processing temperature, easy control of the composition of the film and easy coating over a large substrate. The PbTiO3/SiO2 gated ISFET device of the present invention is highly sensitive in aqueous solution, and particularly in acidic aqueous solution. The sensitivity of the present ISFET ranges from 50 to 58 mV/pH. In addition, the disclosed ISFET has high linearity. Accordingly, the disclosed ISFET can be used to detect effluent.
    Type: Application
    Filed: February 13, 2004
    Publication date: August 18, 2005
    Inventors: Jung-Chuan Chou, Wen Liu, Wen Hong
  • Publication number: 20050147736
    Abstract: A process for fabricating a whole solid-state pH sensing device by using the polypyrrole as the contrast pH detector and a whole solid-state pH sensing device fabricated by the process are disclosed, wherein said device is a differential pair framework potential electrochemical sensing device fabricated by using a non-insulating solid-state inorganic ion-sensing membrane and a polypyrrole sensing membrane. The largest difference between the device of the present invention and the conventional potentiometric type pH sensor is that the sensor of the invention is a solid-state planar sensor. The differential pair framework uses tin dioxide as the ion-sensing membrane and the reference electrode, and uses a polypyrrole sensor as the differential sensor, wherein the sensitivity of tin dioxide is good and has a value up to 57 mV/pH, and the sensitivity of polypyrrole is about 27 mV/pH.
    Type: Application
    Filed: December 31, 2003
    Publication date: July 7, 2005
    Applicant: Chung Yuan Christian University
    Inventors: Shen-Kan Hsiung, Jung-Chuan Chou, Tai-Ping Sun, Chung-We Pan
  • Publication number: 20050147741
    Abstract: A method for fabricating an array pH sensor and a readout circuit device of such array pH sensor are implemented by utilizing an extended ion sensitive field effect transistor to construct the array pH sensor and related readout circuit. The structure of the array sensor having this extended ion sensitive field effect transistor comprises a tin dioxide/metal/silicon dioxide multi-layer structure sensor and a tin dioxide/indium tin oxide/glass multi-layer structure sensor and has excellent properties. Furthermore, the readout circuit and the sensor utilize two signal generators for controlling and reading signals. In particular, the sensor can be effective for increasing the accuracy of measurement and reducing the interference of noise.
    Type: Application
    Filed: December 31, 2003
    Publication date: July 7, 2005
    Applicant: Chung Yuan Christian University
    Inventors: Shen-Kan Hsiung, Jung-Chuan Chou, Tai-Ping Sun, Chung-We Pan, Jing-Sheng Chiang
  • Publication number: 20050139490
    Abstract: An alkaloid sensor, systems comprising the same, and measurement using the systems. The alkaloid sensor has an extended gate field effect transistor (EGFET) structure and comprises a metal oxide semiconductor field effect transistor (MOSFET) on a semiconductor substrate, a sensing unit comprising a substrate, a tin oxide film on the substrate, and a alkaloid acylase film immobilized on the tin oxide film, and a conductive wire connecting the MOSFET and the sensing unit.
    Type: Application
    Filed: December 29, 2004
    Publication date: June 30, 2005
    Inventors: Jung-Chuan Chou, Shin-Cheng Chang
  • Patent number: 6905896
    Abstract: A SnO2 ISFET device and manufacturing method thereof. The present invention prepares SnO2 as the detection membrane of an ISFET by sol-gel technology to obtain a SnO2 ISFET. The present invention also measures the current-voltage curve for different pH and temperatures by a current measuring system. The temperature parameter of the SnO2 ISFET is calculated according to the relationship between the current-voltage curve and temperature. In addition, the drift rate of the SnO2 ISFET for different pH and hysteresis width of the SnO2 ISFET for different pH loop are calculated by a constant voltage/current circuit and a voltage-time recorder to measure the gate voltage of the SnO2 ISFET.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: June 14, 2005
    Assignee: National Yunlin University of Science and Technology
    Inventors: Jung-Chuan Chou, Yii Fang Wang
  • Patent number: 6897081
    Abstract: A method for fabricating a monolithic chip including multi-sensors that can detect pH, temperature, photo-intensity simultaneously and a readout circuit. As such, as well as the multi-sensors, the readout circuit also has a reduced chip area at low cost since selection switches are used to sequentially read pH, temperature and photo-intensity detecting values, wherein the readout action is completed within a clock cycle. The entire structure is fabricated with standard 0.5 ?m CMOS IC, Double Poly Double Metal (DPDM), n-well technology and allows the integration of the on-chip signal conditioning circuitry. The chip fabricated by the method can not only sense the Ph, temperature, photo values but also apply the extended gate field effect transistor (EGFET) on the temperature and light compensation to produce realistic pH values.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: May 24, 2005
    Assignee: Chung Yuan Christian University
    Inventors: Stephen S. K. Hsiung, Jung-Chuan Chou, Tai-Ping Sun, Wen-Yaw Chung, Yuan-Lung Chin, Chung-We Pan
  • Patent number: 6867059
    Abstract: An a-C:H ISFET device and manufacturing method thereof. The present invention prepares a-C:H as the detection membrane of an ISFET by plasma enhanced low pressure chemical vapor deposition (PE-LPCVD) to obtain an a-C:H ISFET. The present invention also measures the current-voltage curve for different pH and temperatures by a current measuring system. The temperature parameter of the a-C:H ISFET is calculated according to the relationship between the current-voltage curve and temperature. In addition, the drift rates of the a-C:H ISFET for different pH and hysteresis width of the a-C:H ISFET for different pH loops are calculated by a constant voltage/current circuit and a voltage-time recorder to measure the gate voltage of the a-C:H ISFET.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: March 15, 2005
    Assignee: National Yunlin University of Science and Technology
    Inventors: Jung-Chuan Chou, Hsuan-Ming Tsai
  • Publication number: 20050040487
    Abstract: An a-C:H ISFET device and manufacturing method thereof. The present invention prepares a-C:H as the detection membrane of an ISFET by plasma enhanced low pressure chemical vapor deposition (PE-LPCVD) to obtain an a-C:H ISFET. The present invention also measures the current-voltage curve for different pH and temperatures by a current measuring system. The temperature parameter of the a-C:H ISFET is calculated according to the relationship between the current-voltage curve and temperature. In addition, the drift rates of the a-C:H ISFET for different pH and hysteresis width of the a-C:H ISFET for different pH loops are calculated by a constant voltage/current circuit and a voltage-time recorder to measure the gate voltage of the a-C:H ISFET.
    Type: Application
    Filed: September 28, 2004
    Publication date: February 24, 2005
    Inventors: Jung-Chuan Chou, Hsuan-Ming Tsai
  • Publication number: 20050040488
    Abstract: An a-C:H ISFET device and manufacturing method thereof. The present invention prepares a-C:H as the detection membrane of an ISFET by plasma enhanced low pressure chemical vapor deposition (PE-LPCVD) to obtain an a-C:H ISFET. The present invention also measures the current-voltage curve for different pH and temperatures by a current measuring system. The temperature parameter of the a-C:H ISFET is calculated according to the relationship between the current-voltage curve and temperature. In addition, the drift rates of the a-C:H ISFET for different pH and hysteresis width of the a-C:H ISFET for different pH loops are calculated by a constant voltage/current circuit and a voltage-time recorder to measure the gate voltage of the a-C:H ISFET.
    Type: Application
    Filed: September 28, 2004
    Publication date: February 24, 2005
    Inventors: Jung-Chuan Chou, Hsuan-Ming Tsai
  • Patent number: 6847067
    Abstract: An a-C:H ISFET device and manufacturing method thereof. The present invention prepares a-C:H as the detection membrane of an ISFET by plasma enhanced low pressure chemical vapor deposition (PE-LPCVD) to obtain an a-C:H ISFET. The present invention also measures the current-voltage curve for different pH and temperatures by a current measuring system. The temperature parameter of the a-C:H ISFET is calculated according to the relationship between the current-voltage curve and temperature. In addition, the drift rates of the a-C:H ISFET for different pH and hysteresis width of the a-C:H ISFET for different pH loops are calculated by a constant voltage/current circuit and a voltage-time recorder to measure the gate voltage of the a-C:H ISFET.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: January 25, 2005
    Assignee: National Yunlin University of Science and Technology
    Inventors: Jung-Chuan Chou, Hsuan-Ming Tsai
  • Publication number: 20040256685
    Abstract: A biosensor, a method of fabricating the sensing unit for the biosensor, and a measuring system comprising the biosensor. The biosensor has an extended gate field effect transistor (EGFET) structure and comprises a metal oxide semiconductor field effect transistor (MOSFET) on a semiconductor substrate, a sensing unit comprising a substrate, a silicon dioxide layer on the substrate, a tin oxide layer on the silicon dioxide layer, and a urease layer immobilized on the tin oxide layer, and a conductive wire connecting the MOSFET and the sensing unit.
    Type: Application
    Filed: July 12, 2004
    Publication date: December 23, 2004
    Inventors: Jung-Chuan Chou, Yen Sheng Wang