Patents by Inventor JungHwan Hwang

JungHwan Hwang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9618963
    Abstract: Disclosed is a power management apparatus and a multi-source energy harvesting system using the apparatus, which manage power supplied by individual harvesting sources without wasting the power, thus efficiently distributing the power to a battery. The power management apparatus includes a plurality of comparison units configured to compare voltages of storage devices respectively connected to output terminals of a plurality of harvesting power sources with a preset threshold voltage. A control unit is configured to control an operation of the power management apparatus. A plurality of switching units are installed between the storage devices and a battery and are configured to be turned on/off in response to switching control signals output from the control unit and to form power transmission paths between corresponding storage devices and the battery. The control unit generates and provides the switching control signals based on output signals of the comparison units.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: April 11, 2017
    Assignee: ELECRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Taewook Kang, Sungeun Kim, Kyunghwan Park, Sungweon Kang, Taeyoung Kang, Kyungsoo Kim, Jungbum Kim, Hyungil Park, Ingi Lim, Byounggun Choi, Changhee Hyoung, Junghwan Hwang
  • Publication number: 20170084245
    Abstract: A display device to display an image during frame intervals, and to display a blank image during a blank interval defined between the frame intervals, includes: a gate driving circuit including a plurality of stages, an ith stage (i is an integer greater than or equal to 2) from among the plurality of stages including a clock terminal to receive a clock signal, wherein the clock signal swings between a first clock voltage and a second clock voltage smaller than the first clock voltage during a normal interval corresponding to each of the frame intervals, and the clock signal is changed to a voltage lower than the second clock voltage during a stabilization interval corresponding to the blank interval.
    Type: Application
    Filed: May 23, 2016
    Publication date: March 23, 2017
    Inventors: Junghwan Hwang, Chanwook Shim, Youngchul Jo
  • Publication number: 20160071636
    Abstract: A dust core includes soft magnetic particles, a first coating layer, a second coating layer, and a third coating layer. The first coating layer is made of aluminum oxide with which at least a part of surfaces of the soft magnetic particles are coated. The second coating layer is made of aluminum nitride with which at least a part of a surface of the first coating layer is coated. The third coating layer is made of low-melting-point glass with which at least a part of a surface of the second coating layer is coated. The low-melting-point glass has a softening point lower than an annealing temperature of the soft magnetic particles.
    Type: Application
    Filed: September 8, 2015
    Publication date: March 10, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masashi OHTSUBO, Masaaki Tani, Takeshi Hattori, Junghwan Hwang, Masashi Hara, Shin Tajima, Shinjiro Saigusa, Kohei Ishii, Daisuke Okamoto, Toshimitsu Takahashi
  • Publication number: 20150364235
    Abstract: A soft magnetic member is formed such that, when a differential relative permeability in an applied magnetic field of 100 A/m is represented by a first differential relative permeability ??L, and when a differential relative permeability in an applied magnetic field of 40 kA/m is represented by a second differential relative permeability ??H, a ratio of the first differential relative permeability ??L to the second differential relative permeability ??H satisfies a relationship of ??L/??H?10, and a magnetic flux density in an applied magnetic field of 60 kA/m is 1.15 T or higher.
    Type: Application
    Filed: June 12, 2015
    Publication date: December 17, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daisuke OKAMOTO, Kiyotaka ONODERA, Shinjiro SAIGUSA, Kohei ISHII, Masashi OHTSUBO, Junghwan HWANG, Masaaki TANI, Takeshi HATTORI
  • Patent number: 9159489
    Abstract: The invention includes: powder preparation step of obtaining magnetic core powders by mixing, of magnetic powders with thermosetting resin powders in hot state; powder filling step of filling the obtained magnetic core powders into a die; a compaction step of compacting magnetic core powders; and compact heating step of heating, compacts to the elevated temperature state at which the thermosetting resin hardens after compaction.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: October 13, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Junghwan Hwang, Takeshi Hattori, Masaki Hirano, Masaki Sugiyama, Yusuke Oishi, Daisuke Okamoto, Hidenari Yamamoto
  • Publication number: 20150066233
    Abstract: Disclosed is a power management apparatus and a multi-source energy harvesting system using the apparatus, which manage power supplied by individual harvesting sources without wasting the power, thus efficiently distributing the power to a battery. The power management apparatus includes a plurality of comparison units configured to compare voltages of storage devices respectively connected to output terminals of a plurality of harvesting power sources with a preset threshold voltage. A control unit is configured to control an operation of the power management apparatus. A plurality of switching units are installed between the storage devices and a battery and are configured to be turned on/off in response to switching control signals output from the control unit and to form power transmission paths between corresponding storage devices and the battery. The control unit generates and provides the switching control signals based on output signals of the comparison units.
    Type: Application
    Filed: July 28, 2014
    Publication date: March 5, 2015
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Taewook KANG, Sungeun KIM, Kyunghwan PARK, Sungweon KANG, Taeyoung KANG, Kyungsoo KIM, Jungbum KIM, Hyungil PARK, Ingi LIM, Byounggun CHOI, Changhee HYOUNG, Junghwan HWANG
  • Patent number: 8665321
    Abstract: An image display apparatus and a method for operating the same are disclosed. The method for operating an image display apparatus includes receiving a 3-dimensional (3D) image, detecting the depth of the 3D image, performing 3D processing on an audio signal received in synchronization with the 3D image in correspondence with the detected depth, and outputting the audio signal subjected to 3D processing. Thus, it is possible to output the audio signal in correspondence with the depth of the 3D image during 3D image display.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: March 4, 2014
    Assignee: LG Electronics Inc.
    Inventors: Tacksung Choi, Sungyong Yoon, Hyunkook Lee, Junghwan Hwang, Dongseok Kim, Byeongmoon Jeon, Jaewon Sung
  • Publication number: 20130147081
    Abstract: The invention includes: powder preparation step of obtaining magnetic core powders by mixing, of magnetic powders with thermosetting resin powders in hot state; powder filling step of filling the obtained magnetic core powders into a die; a compaction step of compacting magnetic core powders; and compact heating step of heating, compacts to the elevated temperature state at which the thermosetting resin hardens after compaction.
    Type: Application
    Filed: July 20, 2011
    Publication date: June 13, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Junghwan Hwang, Takeshi Hattori, Masaki Hirano, Masaki Sugiyama, Yusuke Oishi, Daisuke Okamoto, Hidenari Yamamoto
  • Patent number: 8414984
    Abstract: A method for manufacturing a powder for a magnetic core including at least a process of performing a siliconizing treatment on a surface of an iron powder containing elemental carbon. In the process of siliconizing treatment, a powder containing at least a silicon dioxide is brought into contact with the surface of the iron powder, elemental silicon is detached from the silicon dioxide by heating the powder of silicon dioxide, and the siliconizing treatment is performed by causing the detached elemental silicon to permeate and diffuse into a surface layer of the iron powder. The invention provides a method for manufacturing a powder for a magnetic core, by which loss reduction is achieved.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: April 9, 2013
    Assignees: Toyota Jidosha Kabushiki Kaisha, Fine Sinter Co., Ltd.
    Inventors: Eisuke Hoshina, Toshiya Yamaguchi, Yusuke Oishi, Tomoyasu Kitano, Kazuhiro Kawashima, Junghwan Hwang
  • Publication number: 20120002024
    Abstract: An image display apparatus and a method for operating the same are disclosed. The method for operating an image display apparatus includes receiving a 3-dimensional (3D) image, detecting the depth of the 3D image, performing 3D processing on an audio signal received in synchronization with the 3D image in correspondence with the detected depth, and outputting the audio signal subjected to 3D processing. Thus, it is possible to output the audio signal in correspondence with the depth of the 3D image during 3D image display.
    Type: Application
    Filed: June 7, 2011
    Publication date: January 5, 2012
    Applicant: LG ELECTRONICS INC.
    Inventors: Tacksung CHOI, Sungyong YOON, Hyunkook LEE, Junghwan HWANG, Dongseok KIM, Byeongmoon JEON, Jaewon SUNG
  • Publication number: 20100271158
    Abstract: A method for manufacturing a powder for a magnetic core including at least a process of performing a siliconizing treatment on a surface of an iron powder containing elemental carbon. In the process of siliconizing treatment, a powder containing at least a silicon dioxide is brought into contact with the surface of the iron powder, elemental silicon is detached from the silicon dioxide by heating the powder of silicon dioxide, and the siliconizing treatment is performed by causing the detached elemental silicon to permeate and diffuse into a surface layer of the iron powder. The invention provides a method for manufacturing a powder for a magnetic core, by which loss reduction is achieved.
    Type: Application
    Filed: November 11, 2008
    Publication date: October 28, 2010
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, FINE SINTER CO., LTD.
    Inventors: Eisuke Hoshina, Toshiya Yamaguchi, Yusuke Oishi, Tomoyasu Kitano, Kazuhiro Kawashima, Junghwan Hwang
  • Publication number: 20100079015
    Abstract: According to the present invention, a dust core having excellent insulating properties, high strength, and high density (high magnetic flux density), a method for producing the same, and an electric motor or reactor having a core member composed of the dust core are provided. Therefore, a method for producing a dust core is provided, such method comprising the following steps: a 1st step of preparing a resin powder 2 and a magnetic powder 1 comprising soft magnetic metal powder (pure iron powder 11) particles each having an insulating film (silica film 12) preliminarily formed on the surface thereof; a 2nd step of obtaining a powder mixture by mixing the magnetic powder 1 and the resin powder 2; and a 3rd step of allowing the resin powder 2 to gel in an atmosphere at a certain temperature, press-molding the powder mixture so as to obtain a press molded body 10, and annealing the press molded body 10 so as to produce a dust core 20.
    Type: Application
    Filed: April 18, 2008
    Publication date: April 1, 2010
    Inventors: Eisuke Hoshina, Toshiya Yamaguchi, Yusuke Oishi, Junghwan Hwang, Kazuhiro Kawashima
  • Patent number: 7442266
    Abstract: A high-strength titanium alloy of the present invention includes Ti as a major component, 15 to 30 at % Va group element, and 1.5 to 7 at % oxygen (O) when the entirety is taken as 100 atomic % (at %), and its tensile strength is 1,000 MPa or more. Overturning the conventional concept, regardless of being high oxygen contents, it has been possible to achieve the compatibility between the high strength and high ductility on a higher level.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: October 28, 2008
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Tadahiko Furuta, Kazuaki Nishino, Takashi Saito, JungHwan Hwang
  • Patent number: 7438849
    Abstract: A titanium alloy includes at least one alloying element whose molybdenum equivalent “Moeq” is from 3 to 11% by mass, at least one interstitial solution element selected from the group consisting of O, N and C in an amount of from 0.3 to 3% by mass, and the balance of Ti, when the entirety is taken as 100% by mass. Its content of Al is controlled to 1.8% by mass or less, and it is ? single phase at room temperature at least.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: October 21, 2008
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Shigeru Kuramoto, Tadahiko Furuta, Junghwan Hwang, Rong Chen, Nobuaki Suzuki, Kazuaki Nishino, Takashi Saito
  • Patent number: 7261782
    Abstract: A titanium alloy obtained by a cold-working step, in which 10% or more of cold working is applied to a raw titanium alloy, comprising a Va group element and the balance of titanium substantially, and an aging treatment step, in which a cold-worked member, obtained after the cold-working step, is subjected to an aging treatment so that the parameter “P” falls in a range of from 8.0 to 18.5 at a treatment temperature falling in a range of from 150° C. to 600° C.; and characterized in that its tensile elastic limit strength is 950 MPa or more and its elastic deformation capability is 1.6% or more. This titanium alloy is of high elastic deformation capability as well as high tensile elastic limit strength, and can be utilized in a variety of products extensively.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: August 28, 2007
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: JungHwan Hwang, Tadahiko Furuta, Kazuaki Nishino, Takashi Saito
  • Patent number: 6979375
    Abstract: A titanium alloy member is characterized in that it comprise 40% by weight or more titanium (Ti), a IVa group element and/or a Va group element other than the titanium, wherein a summed amount including the IVa group element and/or the Va group element as well as the titanium is 90% by weight or more, and one or more members made in an amount of from 0.2 to 2.0% by weight and selected from an interstitial element group consisting of oxygen, nitrogen and carbon, and that its basic structure is a body-centered tetragonal crystal or a body-centered cubic crystal in which a ratio (c/a) of a distance between atoms on the c-axis with respect to a distance between atoms on the a-axis falls in a range of from 0.9 to 1.1. This titanium alloy member has such working properties that conventional titanium alloys do not have, is flexible, exhibits a high strength, and can be utilized in a variety of products.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: December 27, 2005
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Tadahiko Furuta, Yoshiki Seno, JungHwan Hwang, Kazuaki Nishino, Takashi Saito
  • Publication number: 20050072496
    Abstract: A titanium alloy obtained by a cold-working step, in which 10% or more of cold working is applied to a raw titanium alloy, comprising a Va group element and the balance of titanium substantially, and an aging treatment step, in which a cold-worked member, obtained after the cold-working step, is subjected to an aging treatment so that the parameter “P” falls in a range of from 8.0 to 18.5 at a treatment temperature falling in a range of from 150° C. to 600° C.; and characterized in that its tensile elastic limit strength is 950 MPa or more and its elastic deformation capability is 1.6% or more. This titanium alloy is of high elastic deformation capability as well as high tensile elastic limit strength, and can be utilized in a variety of products extensively.
    Type: Application
    Filed: December 5, 2001
    Publication date: April 7, 2005
    Inventors: JungHwan Hwang, Tadahiko Furuta, Kazuaki Nishino, Takashi Saito
  • Publication number: 20040115083
    Abstract: A high-strength titanium alloy of the present invention includes Ti as a major component, 15 to 30 at % Va group element, and 1.5 to 7 at % oxygen (O) when the entirety is taken as 100 atomic % (at %), and its tensile strength is 1,000 MPa or more.
    Type: Application
    Filed: September 26, 2003
    Publication date: June 17, 2004
    Inventors: Tadahiko Furuta, Kazuaki Nishino, Takashi Saito, JungHwan Hwang
  • Publication number: 20040055675
    Abstract: A titanium alloy includes at least one alloying element whose molybdenum equivalent “Moeq” is from 3 to 11% by mass, at least one interstitial solution element selected from the group consisting of O, N and C in an amount of from 0.3 to 3% by mass, and the balance of Ti, when the entirety is taken as 100% by mass. Its content of Al is controlled to 1.8% by mass or less, and it is &bgr; single phase at room temperature at least.
    Type: Application
    Filed: September 17, 2003
    Publication date: March 25, 2004
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Shigeru Kuramoto, Tadahiko Furuta, Junghwan Hwang, Rong Chen, Nobuaki Suzuki, Kazuaki Nishino, Takashi Saito
  • Publication number: 20030102062
    Abstract: A titanium alloy member is characterized in that it comprises 40% by weight or more titanium (Ti), a IVa group element and/or a Va group element other than the titanium, wherein a summed amount including the IVa group element and/or the Va group element as well as the titanium is 90% by weight or more, and one or more members made in an amount of from 0.2 to 2.0% by weight and selected from an interstitial element group consisting of oxygen, nitrogen and carbon, and that its basic structure is a body-centered tetragonal crystal or a body-centered cubic crystal in which a ratio (c/a) of a distance between atoms on the c-axis with respect to a distance between atoms on the a-axis falls in a range of from 0.9 to 1.1.
    Type: Application
    Filed: January 2, 2002
    Publication date: June 5, 2003
    Inventors: Tadahiko Furuta, Yoshiki Seno, JungHwan Hwang, Kazuaki Nishino, Takashi Saito