Patents by Inventor Jungwoo Song

Jungwoo Song has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120013402
    Abstract: Disclosed is a closed-loop class-D amplifier circuit including a modulated reference signal generator that provides a modulated reference signal in a feed-forward path, where the reference signal is modulated corresponding to an input signal. The closed-loop class-D amplifier circuit further includes a comparator to generate a control signal based on a comparison of the modulated reference signal and a correction signal, which in turn is produced by filtering a combination of the input signal and a feedback signal. The closed-loop class-D amplifier circuit also includes a pulse generator to generate a pulse-width-modulated signal to drive an output stage of the closed-loop class-D amplifier based on the control signal.
    Type: Application
    Filed: July 19, 2010
    Publication date: January 19, 2012
    Applicant: BROADCOM CORPORATION
    Inventors: Jungwoo Song, Xicheng Jiang, Minsheng Wang, Todd L. Brooks
  • Publication number: 20110260793
    Abstract: Disclosed is an amplifier circuit configured to amplify a pulse stream. The amplifier circuit comprises a switching block including a first switch operable to couple an output node of the switching block to a positive reference voltage, a second switch operable to couple the output node to a ground reference voltage and a third switch operable to couple the output node to a negative reference voltage. The amplifier circuit is configured to amplify the pulse stream into an amplified signal detectable at the output node such that the amplified signal has a common-mode voltage level substantially equal to zero volts. In one embodiment, the amplifier circuit is configured to amplify the pulse stream in accordance with a Class-D amplification scheme. In one embodiment, the output node can be directly connected to a load device without a DC blocking capacitor being interposed between the output node and the load device.
    Type: Application
    Filed: April 27, 2010
    Publication date: October 27, 2011
    Applicant: BROADCOM CORPORATION
    Inventors: Xicheng Jiang, Jungwoo Song
  • Patent number: 8013768
    Abstract: An upstream amplifier is integrated on a substrate with a digital-to-analog converter (DAC) to form an integrated circuit. In an embodiment, a low-pass filter is also integrated on the substrate. The output signal level of the upstream amplifier is controllable. In embodiments, fine adjustments are made to the output signal level of the upstream amplifier by varying a bias current of the DAC. A software control bit is used to switch between a power-on mode of operation and a power-down mode of operation. The upstream amplifier transmits in a burst mode. The power consumption of the upstream amplifier scales with the amplifier's output signal level. A high degree of matching is attained between the positive and negative paths of the upstream amplifier. This provides high immunity from common-mode disturbances such as substrate noise, clock spurs, and glitches caused by a gain change.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: September 6, 2011
    Assignee: Broadcom Corporation
    Inventors: Stephen A Jantzi, Anilkumar V Tammineedi, Jungwoo Song, Lawrence M Burns, Donald G McMullin, Agnes N Woo
  • Publication number: 20090253240
    Abstract: A circuit with dielectric thicknesses is presented that includes a low-pass filter including one or more semiconductor devices having a thick gate oxide layer, while further semiconductor devices of the circuit have thin gate oxide layers. The low-pass filter semiconductor device includes an N-type substrate, a P-type region formed on the N-type substrate, a thick gate oxide layer formed over the P-type region, a P+ gate electrode formed over the thick gate oxide layer and coupled to a first voltage supply line, and P+ pick-up terminals formed in the P-type region adjacent the gate electrode and coupled to a second voltage supply line. The low-pass filter semiconductor device acts as a capacitor, whereby a gate-to-substrate voltage is maintained at less than zero volts to maintain a stable control voltage for the circuit.
    Type: Application
    Filed: June 15, 2009
    Publication date: October 8, 2009
    Applicant: Broadcom Corporation
    Inventors: Derek Tam, Jasmine Cheng, Jungwoo Song, Takayuki Hayashi
  • Patent number: 7547956
    Abstract: A circuit with dielectric thicknesses is presented that includes a low-pass filter including one or more semiconductor devices having a thick gate oxide layer, while further semiconductor devices of the circuit have thin gate oxide layers. The low-pass filter semiconductor device includes an N-type substrate, a P-type region formed on the N-type substrate, a thick gate oxide layer formed over the P-type region, a P+ gate electrode formed over the thick gate oxide layer and coupled to a first voltage supply line, and P+ pick-up terminals formed in the P-type region adjacent the gate electrode and coupled to a second voltage supply line. The low-pass filter semiconductor device acts as a capacitor, whereby a gate-to-substrate voltage is maintained at less than zero volts to maintain a stable control voltage for the circuit.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: June 16, 2009
    Assignee: Broadcom Corporation
    Inventors: Derek Tam, Jasmine Cheng, Jungwoo Song, Takayuki Hayashi
  • Publication number: 20080069373
    Abstract: A noise reduction circuit for reducing the effects of low frequency noise such as wind noise in communications applications is described. In one embodiment, the noise reduction circuit features a high pass filter formed by exploiting the existing off-chip AC coupling capacitances in making the connection to the source of audio signals. The filter may be adaptive to environmental low frequency noise level through programming the shunt resistances. A low-noise wide dynamic range programmable gain amplifier is also described. Adaptive equalization of the audio signal is also described through the utilization of programmable front-end resistors and a back-end audio equalizer.
    Type: Application
    Filed: September 20, 2006
    Publication date: March 20, 2008
    Applicant: Broadcom Corporation
    Inventors: Xicheng Jiang, Jungwoo Song, Jianlong Chen
  • Patent number: 7304538
    Abstract: Provided is an amplifier including a system for controlling output stage quiescent current. The amplifier includes a driving stage including first pmos and nmos transistors coupled together, and an output stage connected to the driving stage. The output stage includes second pmos and nmos transistors coupled together. The amplifier also includes a quiescent control stage connected to the driving stage and including third pmos and nmos transistors coupled together, fourth pmos coupled to third pmos and 4th nmos coupled to 3rd nmos. A topology of the coupled third pmos and nmos transistors substantially matches a topology of the coupled first pmos and nmos transistors, and 4th pmos and nmos match to 2nd pmos and nmos.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: December 4, 2007
    Assignee: Broadcom Corporation
    Inventor: Jungwoo Song
  • Patent number: 7135730
    Abstract: A first MOS-on-NWELL device is formed on a substrate and has its pickup terminals optionally connected together. A second MOS-on-NWELL device is formed on the substrate and has its pickup terminals optionally connected together. A gate of the first MOS-on-NWELL device is connected to the pickup terminals of the second MOS-on-NWELL device. A gate of the second MOS-on-NWELL device is connected to the pickup terminals of the first MOS-on-NWELL device. A first PMOS transistor is formed on a substrate and has its source and drain terminals connected together. A second PMOS transistor is formed on a substrate and has its source and drain terminals connected together. A gate of the first PMOS transistor is connected to the source and drain terminals of the second PMOS transistor. A gate of the second PMOS transistor is connected to the source and drain terminals of the first PMOS transistor.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: November 14, 2006
    Assignee: Broadcom Corporation
    Inventors: Chun-ying Chen, Jungwoo Song
  • Patent number: 7034610
    Abstract: An upstream amplifier is integrated on a substrate with a digital-to-analog converter (DAC) to form an integrated circuit. In an embodiment, a low-pass filter is also integrated on the substrate. The output signal level of the upstream amplifier is controllable. In embodiments, fine adjustments are made to the output signal level of the upstream amplifier by varying a bias current of the DAC. A software control bit is used to switch between a power-on mode of operation and a power-down mode of operation. The upstream amplifier transmits in a burst mode. The power consumption of the upstream amplifier scales with the amplifier's output signal level. A high degree of matching is attained between the positive and negative paths of the upstream amplifier. This provides high immunity from common-mode disturbances such as substrate noise, clock spurs, and glitches caused by a gain change.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: April 25, 2006
    Assignee: Broadcom Corporation
    Inventors: Stephen A. Jantzi, Anilkumar V. Tammineedi, Jungwoo Song, Lawrence M. Burns, Donald G. McMullin, Agnes N. Woo
  • Patent number: 7026970
    Abstract: Provided are a system and method for implementing a multirate analog finite impulse response (FIR) filter. A system of the present invention includes a modulator having a first adder and a quantizer. The first adder includes an output port, and the quantizer includes (i) an input port coupled to the first adder output port and (ii) a quantizer output port. A second adder is also included, having one input port coupled to the first adder output port and another input port coupled to the quantizer output port. Also included are at least two two-unit delays, a first of the two-unit delays having an input port coupled to an output port of the second adder, and an output port coupled to an input port of the second of the two-unit delays. An output port of the second two-unit delays is coupled to a first input port of the first adder.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: April 11, 2006
    Assignee: Broadcom Corporation
    Inventors: Minsheng Wang, Jungwoo Song
  • Patent number: 7002405
    Abstract: A low noise transconductance cell includes a resistor and a differential circuit pair having two equivalent half-circuits. Each half-circuit includes a feedback loop coupled to the resistor. The feedback loop includes an input transistor coupled to an inverting gain stage. The inverting gain stage is coupled to an output transistor which in turn is coupled to the input transistor and the resistor. In a low noise transconductance cell, a bias current source is coupled to the center of series connected resistors. In a high swing transconductance cell, a first bias current source is coupled to the left terminal of a resistance stage and a second bias current source is coupled to the right terminal of the resistance stage. The resistance stage can include a single resistor or a plurality of resistors.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: February 21, 2006
    Assignee: Broadcom Corporation
    Inventors: Todd Brooks, Jungwoo Song, Wynstan Tong
  • Publication number: 20050280468
    Abstract: Provided is an amplifier including a system for controlling output stage quiescent current. The amplifier includes a driving stage including first pmos and nmos transistors coupled together, and an output stage connected to the driving stage. The output stage includes second pmos and nmos transistors coupled together. The amplifier also includes a quiescent control stage connected to the driving stage and including third pmos and nmos transistors coupled together, fourth pmos coupled to third pmos and 4th nmos coupled to 3rd nmos. A topology of the coupled third pmos and nmos transistors substantially matches a topology of the coupled first pmos and nmos transistors, and 4th pmos and nmos match to 2nd pmos and nmos.
    Type: Application
    Filed: October 28, 2004
    Publication date: December 22, 2005
    Inventor: Jungwoo Song
  • Publication number: 20050179574
    Abstract: Provided are a system and method for implementing a multirate analog finite impulse response (FIR) filter. A system of the present invention includes a modulator having a first adder and a quantizer. The first adder includes an output port, and the quantizer includes (i) an input port coupled to the first adder output port and (ii) a quantizer output port. A second adder is also included, having one input port coupled to the first adder output port and another input port coupled to the quantizer output port. Also included are at least two two-unit delays, a first of the two-unit delays having an input port coupled to an output port of the second adder, and an output port coupled to an input port of the second of the two-unit delays. An output port of the second two-unit delays is coupled to a first input port of the first adder.
    Type: Application
    Filed: January 10, 2005
    Publication date: August 18, 2005
    Applicant: Broadcom Corporation
    Inventors: Minsheng Wang, Jungwoo Song
  • Publication number: 20050156219
    Abstract: A first MOS-on-NWELL device is formed on a substrate and has its pickup terminals optionally connected together. A second MOS-on-NWELL device is formed on the substrate and has its pickup terminals optionally connected together. A gate of the first MOS-on-NWELL device is connected to the pickup terminals of the second MOS-on-NWELL device. A gate of the second MOS-on-NWELL device is connected to the pickup terminals of the first MOS-on-NWELL device. A first PMOS transistor is formed on a substrate and has its source and drain terminals connected together. A second PMOS transistor is formed on a substrate and has its source and drain terminals connected together. A gate of the first PMOS transistor is connected to the source and drain terminals of the second PMOS transistor. A gate of the second PMOS transistor is connected to the source and drain terminals of the first PMOS transistor.
    Type: Application
    Filed: January 20, 2004
    Publication date: July 21, 2005
    Applicant: Broadcom Corporation
    Inventors: Chun-ying Chen, Jungwoo Song
  • Publication number: 20050087839
    Abstract: A circuit with dielectric thicknesses is presented that includes a low-pass filter including one or more semiconductor devices having a thick gate oxide layer, while further semiconductor devices of the circuit have thin gate oxide layers. The low-pass filter semiconductor device includes an N-type substrate, a P-type region formed on the N-type substrate, a thick gate oxide layer formed over the P-type region, a P+ gate electrode formed over the thick gate oxide layer and coupled to a first voltage supply line, and P+ pick-up terminals formed in the P-type region adjacent the gate electrode and coupled to a second voltage supply line. The low-pass filter semiconductor device acts as a capacitor, whereby a gate-to-substrate voltage is maintained at less than zero volts to maintain a stable control voltage for the circuit.
    Type: Application
    Filed: October 28, 2004
    Publication date: April 28, 2005
    Inventors: Derek Tam, Jasmine Cheng, Jungwoo Song, Takayuki Hayashi
  • Patent number: 6856267
    Abstract: Provided are a system and method for implementing a multirate analog finite impulse response (FIR) filter. A system of the present invention includes a modulator having a first adder and a quantizer. The first adder includes an output port, and the quantizer includes (i) an input port coupled to the first adder output port and (ii) a quantizer output port. A second adder is also included, having one input port coupled to the first adder output port and another input port coupled to the quantizer output port. Also included are at least two two-unit delays, a first of the two-unit delays having an input port coupled to an output port of the second adder, and an output port coupled to an input port of the second of the two-unit delays. An output port of the second two-unit delays is coupled to a first input port of the first adder.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: February 15, 2005
    Assignee: Broadcom Corporation
    Inventors: Minsheng Wang, Jungwoo Song
  • Patent number: 6828654
    Abstract: In a low-pass filter for a phase locked loop (PLL) circuit, a capacitor formed by an N-type substrate, a P-type region formed on the N-type substrate, a thick oxide formed over the P-type region, a P+ gate electrode formed over the thick oxide and coupled to a first voltage supply line, and P+ pick-up terminals formed in the P-type region adjacent the gate electrode and coupled to a second voltage supply line, whereby a gate-to-substrate voltage is maintained at less than zero volts to maintain a stable control voltage for the PLL.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: December 7, 2004
    Assignee: Broadcom Corporation
    Inventors: Derek Tam, Jasmine Cheng, Jungwoo Song, Takayuki Hayashi
  • Publication number: 20040232980
    Abstract: An upstream amplifier is integrated on a substrate with a digital-to-analog converter (DAC) to form an integrated circuit. In an embodiment, a low-pass filter is also integrated on the substrate. The output signal level of the upstream amplifier is controllable. In embodiments, fine adjustments are made to the output signal level of the upstream amplifier by varying a bias current of the DAC. A software control bit is used to switch between a power-on mode of operation and a power-down mode of operation. The upstream amplifier transmits in a burst mode. The power consumption of the upstream amplifier scales with the amplifier's output signal level. A high degree of matching is attained between the positive and negative paths of the upstream amplifier. This provides high immunity from common-mode disturbances such as substrate noise, clock spurs, and glitches caused by a gain change.
    Type: Application
    Filed: June 7, 2004
    Publication date: November 25, 2004
    Applicant: Broadcom Corporation
    Inventors: Stephen A. Jantzi, Anilkumar V. Tammineedi, Jungwoo Song, Lawrence M. Burns, Donald G. McMullin, Agnes N. Woo
  • Publication number: 20040160245
    Abstract: A low noise transconductance cell includes a resistor and a differential circuit pair having two equivalent half-circuits. Each half-circuit includes a feedback loop coupled to the resistor. The feedback loop includes an input transistor coupled to an inverting gain stage. The inverting gain stage is coupled to an output transistor which in turn is coupled to the input transistor and the resistor. In a low noise transconductance cell, a bias current source is coupled to the center of series connected resistors. In a high swing transconductance cell, a first bias current source is coupled to the left terminal of a resistance stage and a second bias current source is coupled to the right terminal of the resistance stage. The resistance stage can include a single resistor or a plurality of resistors.
    Type: Application
    Filed: February 13, 2004
    Publication date: August 19, 2004
    Inventors: Todd Brooks, Jungwoo Song, Wynstan Tong
  • Patent number: 6747510
    Abstract: An upstream amplifier is integrated on a substrate with a digital-to-analog converter (DAC) to form an integrated circuit. In an embodiment, a low-pass filter is also integrated on the substrate. The output signal level of the upstream amplifier is controllable. In embodiments, fine adjustments are made to the output signal level of the upstream amplifier by varying a bias current of the DAC. A software control bit is used to switch between a power-on mode of operation and a power-down mode of operation. The upstream amplifier transmits in a burst mode. The power consumption of the upstream amplifier scales with the amplifier's output signal level. A high degree of matching is attained between the positive and negative paths of the upstream amplifier. This provides high immunity from common-mode disturbances such as substrate noise, clock spurs, and glitches caused by a gain change.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: June 8, 2004
    Assignee: Broadcom Corporation
    Inventors: Stephen A. Jantzi, Anilkumar V. Tammineedi, Jungwoo Song, Lawrence M. Burns, Donald G. McMullin, Agnes N. Woo