Patents by Inventor Junsong Li

Junsong Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8270544
    Abstract: According to one aspect of the present invention, an apparatus is provided to enable weather band radio signals to be received and processed using a digital signal processor (DSP). The DSP can include functionality to implement both frequency modulation (FM) demodulation and weather band data demodulation, i.e., specific area encoding (SAME) demodulation. In one such embodiment, soft decision samples of a SAME message can be combined, and based on a combined result, a hard decision unit can generate a bit value of weather band data.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: September 18, 2012
    Assignee: Silicon Laboratories Inc.
    Inventor: Junsong Li
  • Publication number: 20120099680
    Abstract: According to one aspect of the present invention, an apparatus is provided to enable weather band radio signals to be received and processed using a digital signal processor (DSP). The DSP can include functionality to implement both frequency modulation (FM) demodulation and weather band data demodulation, i.e., specific area encoding (SAME) demodulation. In one such embodiment, soft decision samples of a SAME message can be combined, and based on a combined result, a hard decision unit can generate a bit value of weather band data.
    Type: Application
    Filed: January 3, 2012
    Publication date: April 26, 2012
    Inventor: Junsong Li
  • Patent number: 8107562
    Abstract: According to one aspect of the present invention, an apparatus is provided to enable weather band radio signals to be received and processed using a digital signal processor (DSP). The DSP can include functionality to implement both frequency modulation (FM) demodulation and weather band data demodulation, i.e., specific area encoding (SAME) demodulation. In one such embodiment, soft decision samples of a SAME message can be combined, and based on a combined result, a hard decision unit can generate a bit value of weather band data.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: January 31, 2012
    Assignee: Silicon Laboratories Inc.
    Inventor: Junsong Li
  • Publication number: 20110261912
    Abstract: One aspect of the present invention is directed to an apparatus to perform impulse blanking of a received signal at multiple locations of a signal processing path. To effect such impulse blanking, multiple impulse detectors and blankets may be present, in addition to other circuitry. The impulse detectors may operate at different bandwidths, and the impulse blankers may be located at different locations of the signal processing path and may be differently configured.
    Type: Application
    Filed: April 27, 2010
    Publication date: October 27, 2011
    Inventor: Junsong Li
  • Patent number: 8045656
    Abstract: In one embodiment, the present invention includes a digital mixer to receive and digitally mix incoming weather band radio data with a control signal, a digital demodulator to demodulate the data to obtain a demodulated signal, and a digital feedback loop coupled between the demodulator and the digital mixer. The digital feedback loop includes a loop filter to receive the demodulated signal and to generate a filtered output and a fine tune controller to receive the filtered output and a frequency control signal and to generate the control signal based on them. In this way, audible artifacts caused by a frequency step change occurring in an analog front end to which the digital circuitry is coupled can be reduced or removed.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: October 25, 2011
    Assignee: Silicon Laboratories Inc.
    Inventor: Junsong Li
  • Publication number: 20110044414
    Abstract: In one embodiment, a method for processing radio frequency signals includes estimating an average value of a demodulated signal and a noise signal, both obtained from a radio frequency signal, estimating a noise floor based on the noise signal, generating a blend control signal based on the average values and the noise floor, and blending at least two path signals based on the blend control signal to obtain a blended signal. This blended signal may be output for further processing when multipath noise is detected.
    Type: Application
    Filed: November 23, 2009
    Publication date: February 24, 2011
    Inventor: Junsong Li
  • Publication number: 20100167680
    Abstract: In one embodiment, a receiver includes parallel paths for signal channel processing and image channel processing. The paths may include a mixer to receive an intermediate frequency (IF) signal and to downconvert the IF signal to a channel baseband signal, a filter to generate a filtered channel value, a combiner to combine the channel baseband signal with a filtered channel value from the other path to obtain a channel path output, in addition to one or more controllers to generate a step control signal and update a weighting of the filters based at least in part on the step control signal.
    Type: Application
    Filed: December 30, 2008
    Publication date: July 1, 2010
    Inventors: Junsong Li, John Khoury
  • Patent number: 7697898
    Abstract: Embodiments of the present invention relate generally to receivers. A frequency modulated (FM) receiver includes an equalizer control unit coupled to receive at least one FM signal quality indicator and provide a control signal based on the FM signal quality indicator. An adaptive equalizer coupled to receive the control signal from the equalizer control unit and an FM signal and provide a filtered FM signal corresponding to the received FM signal. Coefficients of the adaptive equalizer are reset in response to the control signal. Another embodiment relates to a method for processing a frequency modulated (FM) signal. An FM signal is received. At least one FM signal quality indicator is used to provide a control signal. Based on the control signal, the received FM signal is filtered using one of an adaptive filter and a static filter to provide a filtered FM signal.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: April 13, 2010
    Assignee: Freescale Semiconductor, Inc
    Inventors: Raghu G. Raj, Jon D. Hendrix, Junsong Li
  • Patent number: 7684467
    Abstract: In one embodiment, the present invention includes a method for receiving data corresponding to a portion of an incoming radio frequency (RF) spectrum, determining a set of estimates including one or more pairs of a channel frequency estimate and a symbol rate estimate from the data via a linear spectrum analysis, and determining a refined set of estimates from the set of estimates via at least one non-linear spectrum analysis.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: March 23, 2010
    Assignee: Silicon Laboratories Inc.
    Inventors: Junsong Li, Yan Zhou
  • Publication number: 20090154603
    Abstract: In one embodiment, the present invention includes a digital mixer to receive and digitally mix incoming weather band radio data with a control signal, a digital demodulator to demodulate the data to obtain a demodulated signal, and a digital feedback loop coupled between the demodulator and the digital mixer. The digital feedback loop includes a loop filter to receive the demodulated signal and to generate a filtered output and a fine tune controller to receive the filtered output and a frequency control signal and to generate the control signal based on them. In this way, audible artifacts caused by a frequency step change occurring in an analog front end to which the digital circuitry is coupled can be reduced or removed.
    Type: Application
    Filed: December 14, 2007
    Publication date: June 18, 2009
    Inventor: Junsong Li
  • Publication number: 20090154606
    Abstract: According to one aspect of the present invention, an apparatus is provided to enable weather band radio signals to be received and processed using a digital signal processor (DSP). The DSP can include functionality to implement both frequency modulation (FM) demodulation and weather band data demodulation, i.e., specific area encoding (SAME) demodulation. In one such embodiment, soft decision samples of a SAME message can be combined, and based on a combined result, a hard decision unit can generate a bit value of weather band data.
    Type: Application
    Filed: December 14, 2007
    Publication date: June 18, 2009
    Inventor: Junsong Li
  • Patent number: 7447284
    Abstract: One embodiment of the present invention relates to noise control of one or more signals. In one embodiment, impulsive-type noise events, such as multipath noise events or pops, may be detected and suppressed to reduce signal distortion. For example, in one embodiment related to a radio receiver (100), a predictor (436) having an adaptive filter (402) is used in combination with a fast attack slow decay mechanism (434) to provide noise control signals (352, 358) which may then be used to suppress noise events. In one embodiment, the fast attack slow decay mechanism includes applying a wide bandwidth filter at the onset of a noise event to quickly track variations in an error signal and applying a narrow wide bandwidth filter a peak of the noise event is detected in order to smooth variations in the error signal (410). This allows for improved psycho-acoustic perception. In one embodiment, the radio receiver is a mobile radio receiver.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: November 4, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Raghu Raj, Junsong Li
  • Patent number: 7339504
    Abstract: An asynchronous sample rate converter including a feedback loop configured to generate a control signal corresponding to an output sample rate that is synchronous with an output clock signal and a normalized time distance value corresponding to a plurality of input samples and an interpolator configured to generate an output sample in response to receiving the control signal using the normalized time distance value and outputs of at least two polyphase filter components that are generated from at least the plurality of input samples is provided.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: March 4, 2008
    Assignee: Silicon Laboratories Inc.
    Inventor: Junsong Li
  • Patent number: 7260163
    Abstract: A noise blanker (40, 106) monitors and removes noise from a sampled signal by adaptive filtering (98, 150) the sampled signal to generate trained adaptive filter prediction coefficients. The sampled signal is provided as an output signal when the noise blanker is in a training mode. A noise monitor (34, 154) detects whether noise contained within the sampled signal exceeds a predetermined threshold and provides a control signal in response to the detecting. The noise blanker is placed in a prediction mode for a predetermined amount of time in response to asserting the control signal. A prediction output signal is generated using a plurality of prediction coefficients as an all-pole filter. The prediction output signal has minimal noise content.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: August 21, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Junsong Li, Ronald Wang, Raghu G. Raj
  • Publication number: 20070098089
    Abstract: In one embodiment, the present invention includes a method for receiving data corresponding to a portion of an incoming radio frequency (RF) spectrum, determining a set of estimates including one or more pairs of a channel frequency estimate and a symbol rate estimate from the data via a linear spectrum analysis, and determining a refined set of estimates from the set of estimates via at least one non-linear spectrum analysis.
    Type: Application
    Filed: October 28, 2005
    Publication date: May 3, 2007
    Inventors: Junsong Li, Yan Zhou
  • Patent number: 7123892
    Abstract: An AM/FM DIF radio has an IF to audio converter that provides an audio signal from an IF signal responsive to a clock signal. During the processing of the IF signal, a spurious signal is intentionally generated. The spurious signal is based on the predetermined offset which is included in the IF signal applied to an A/D converter. The predetermined offset is greater than or equal to half of the AM bandwidth and less than or equal to the system bandwidth. The spurious signal is generated at a frequency proportional to the sum of an imprecision offset and the predetermined offset. A low pass filter removes the spurious signal while preserving the desired portion of the audio signal.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: October 17, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Junsong Li, Bradley A. Banks, Yui-Luen J. Ho
  • Patent number: 7031680
    Abstract: A method for stopping on a radio station includes calculating a radio signal quality (205) using a multipath echo indicator and determining if the radio signal quality is greater than a predetermined signal quality threshold (210). A zero crossings indicator of a demodulated signal may be used (225) to reduce a false alarm rate. An apparatus includes an antenna (105), a local oscillator (110) coupled to the antenna, an analog-to-digital converter circuit (115) coupled to the local oscillator, a demodulator circuit (120) coupled to the analog-to-digital converter circuit, a signal strength determining circuit (125) coupled to the analog-to-digital converter circuit, a logarithmic circuit (150) coupled to the signal strength determining circuit, a multipath echo bandpass filter (155) coupled to the logarithmic circuit, and a stop-on-station circuit (145) coupled to the demodulator circuit, the multipath echo bandpass filter, and the logarithmic circuit.
    Type: Grant
    Filed: December 5, 2002
    Date of Patent: April 18, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Raghu G. Raj, Junsong Li
  • Patent number: 6957054
    Abstract: A radio receiver (100) has an IF (intermediate frequency) filter (200) for automatically adjusting its intermediate frequency. The filter (200) includes a filter bank (304), an accumulative sub-band formation (322) and an accumulative sub-band power estimator/switch control (324). The filter bank (304) generates sub-bands, each sub-band having a predetermined frequency range. The accumulative sub-band formation (322) selectively sums the sub-bands to provide lowpass filters having incrementally increasing bandwidth. Power estimates of the lowpass filters are used to determine which lowpass filter output is appropriate for adjacent station interference. Also, if there is no adjacent station interference, the IF filter (200) selects the appropriate filter output depending on the signal strength of the desired station.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: October 18, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Junsong Li
  • Publication number: 20050181741
    Abstract: Embodiments of the present invention relate generally to receivers. A frequency modulated (FM) receiver includes an equalizer control unit coupled to receive at least one FM signal quality indicator and provide a control signal based on the FM signal quality indicator. An adaptive equalizer coupled to receive the control signal from the equalizer control unit and an FM signal and provide a filtered FM signal corresponding to the received FM signal. Coefficients of the adaptive equalizer are reset in response to the control signal. Another embodiment relates to a method for processing a frequency modulated (FM) signal. An FM signal is received. At least one FM signal quality indicator is used to provide a control signal. Based on the control signal, the received FM signal is filtered using one of an adaptive filter and a static filter to provide a filtered FM signal.
    Type: Application
    Filed: February 13, 2004
    Publication date: August 18, 2005
    Inventors: Raghu Raj, Jon Hendrix, Junsong Li
  • Publication number: 20050079838
    Abstract: An AM/FM DIF radio has an IF to audio converter that provides an audio signal from an IF signal responsive to a clock signal. During the processing of the IF signal, a spurious signal is intentionally generated. The spurious signal is based on the predetermined offset which is included in the IF signal applied to an A/D converter. The predetermined offset is greater than or equal to half of the AM bandwidth and less than or equal to the system bandwidth. The spurious signal is generated at a frequency proportional to the sum of an imprecision offset and the predetermined offset. A low pass filter removes the spurious signal while preserving the desired portion of the audio signal.
    Type: Application
    Filed: October 10, 2003
    Publication date: April 14, 2005
    Inventors: Junsong Li, Bradley Banks, Yui-Luen Ho