Patents by Inventor Junsong Li

Junsong Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6868129
    Abstract: A demodulator (20) extracts a digital sub-carrier signal from a modulated signal and provides the sub-carrier signal in clock and data format. Demodulation occurs with two mixing stages (32, 40, 42) and at sampling frequencies that are independent from the frequency of transmission of the modulated signal. Matched filters (44, 46) try to match the received sub-carrier signal with a predefined bi-phase pulse shape. Phase correction is applied at a low sampling frequency. After phase correction, digital interpolation is used to re-sample the sub-carrier signal.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: March 15, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Junsong Li, Azfar Inayatullah, Yui-Luen Ho
  • Publication number: 20040203551
    Abstract: A noise blanker (40, 106) monitors and removes noise from a sampled signal by adaptive filtering (98, 150) the sampled signal to generate trained adaptive filter prediction coefficients. The sampled signal is provided as an output signal when the noise blanker is in a training mode. A noise monitor (34, 154) detects whether noise contained within the sampled signal exceeds a predetermined threshold and provides a control signal in response to the detecting. The noise blanker is placed in a prediction mode for a predetermined amount of time in response to asserting the control signal. A prediction output signal is generated using a plurality of prediction coefficients as an all-pole filter. The prediction output signal has minimal noise content.
    Type: Application
    Filed: August 9, 2002
    Publication date: October 14, 2004
    Inventors: Junsong Li, Ronald Wang, Raghu G. Raj
  • Publication number: 20040190659
    Abstract: One embodiment of the present invention relates to noise control of one or more signals. In one embodiment, impulsive-type noise events, such as multipath noise events or pops, may be detected and suppressed to reduce signal distortion. For example, in one embodiment related to a radio receiver (100), a predictor (436) having an adaptive filter (402) is used in combination with a fast attack slow decay mechanism (434) to provide noise control signals (352, 358) which may then be used to suppress noise events. In one embodiment, the fast attack slow decay mechanism includes applying a wide bandwidth filter at the onset of a noise event to quickly track variations in an error signal and applying a narrow wide bandwidth filter a peak of the noise event is detected in order to smooth variations in the error signal (410). This allows for improved psycho-acoustic perception. In one embodiment, the radio receiver is a mobile radio receiver.
    Type: Application
    Filed: March 28, 2003
    Publication date: September 30, 2004
    Inventors: Raghu Raj, Junsong Li
  • Patent number: 6760386
    Abstract: Embodiments of the present invention relate generally to receivers. One embodiment relates to a digital FM receiver having multiple sensors (e.g. antennas). In one embodiment, the digital receiver includes a baseband unit having a channel processing unit. In one embodiment, the channel processing unit is capable of calculating or estimating a phase difference between the incoming signals prior to combining them. One embodiment uses phase estimation method for diversity combining the signals while another embodiment utlizes a hybrid phase lock loop method. Also, some embodiments of the present invention provide for echo-cancelling after diversity combining. An alternate embodiment of the channel processing unit utilizes a space-time unit to diversity combine and provide echo cancelling for the incoming signals.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: July 6, 2004
    Assignee: Motorola, Inc.
    Inventors: Junsong Li, Jon D. Hendrix, Charles E. Seaberg
  • Patent number: 6751264
    Abstract: Embodiments of the present invention relate generally to receivers. One embodiment relates to a digital FM receiver having multiple sensors (e.g. antennas). In one embodiment, the digital receiver includes a baseband unit having a channel processing unit. In one embodiment, the channel processing unit is capable of calculating or estimating a phase difference between the incoming signals prior to combining them. One embodiment uses phase estimation method for diversity combining the signals while another embodiment utlizes a hybrid phase lock loop method. Also, some embodiments of the present invention provide for echo-cancelling after diversity combining. An alternate embodiment of the channel processing unit utilizes a space-time unit to diversity combine and provide echo cancelling for the incoming signals.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: June 15, 2004
    Assignee: Motorola, Inc.
    Inventors: Yui-Luen Ho, Junsong Li, Azfar Inayatullah
  • Publication number: 20040110478
    Abstract: A method for stopping on a radio station includes calculating a radio signal quality (205) using a multipath echo indicator and determining if the radio signal quality is greater than a predetermined signal quality threshold (210). A zero crossings indicator of a demodulated signal may be used (225) to reduce a false alarm rate. An apparatus includes an antenna (105), a local oscillator (110) coupled to the antenna, an analog-to-digital converter circuit (115) coupled to the local oscillator, a demodulator circuit (120) coupled to the analog-to-digital converter circuit, a signal strength determining circuit (125) coupled to the analog-to-digital converter circuit, a logarithmic circuit (150) coupled to the signal strength determining circuit, a multipath echo bandpass filter (155) coupled to the logarithmic circuit, and a stop-on-station circuit (145) coupled to the demodulator circuit, the multipath echo bandpass filter, and the logarithmic circuit.
    Type: Application
    Filed: December 5, 2002
    Publication date: June 10, 2004
    Inventors: Raghu G. Raj, Junsong Li
  • Publication number: 20040029548
    Abstract: A radio receiver (100) has an IF (intermediate frequency) filter (200) for automatically adjusting its intermediate frequency. The filter (200) includes a filter bank (304), an accumulative sub-band formation (322) and an accumulative sub-band power estimator/switch control (324). The filter bank (304) generates sub-bands, each sub-band having a predetermined frequency range. The accumulative sub-band formation (322) selectively sums the sub-bands to provide lowpass filters having incrementally increasing bandwidth. Power estimates of the lowpass filters are used to determine which lowpass filter output is appropriate for adjacent station interference. Also, if there is no adjacent station interference, the IF filter (200) selects the appropriate filter output depending on the signal strength of the desired station.
    Type: Application
    Filed: August 9, 2002
    Publication date: February 12, 2004
    Inventor: Junsong Li
  • Patent number: 6658245
    Abstract: A radio receiver (100) has an IF (intermediate frequency) filter (200) for dynamically adjusting its intermediate frequency. The filter (200) includes a filter bank (301), power/amplitude estimator circuits (308, 310, 312), and weighting circuits (314, 316, 318). The filter bank (301) generates sub-bands, each sub-band having a predetermined frequency range. The power/amplitude estimators (308, 310, 312) provide an estimated power/amplitude in each sub-band. A filter control (320) uses the power/amplitude estimates to determine a percentage of each sub-band signal that is permitted to be coupled a summation circuit (319). The summation circuit (319) sums the weighted sub-band signals to provide a filtered output signal to a demodulator (212).
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: December 2, 2003
    Assignee: Motorola, Inc.
    Inventors: Junsong Li, Charles E. Seaberg, Jie Su
  • Patent number: 6646500
    Abstract: A digital FM demodulator employs a baseband phase lock loop (BBPLL), which is particularly effective for long range reception, for combining and demodulating a pair of signals represented by the mathematical expression A(t)ej&thgr;(t) to result in an approximation of d&thgr;/dt. This approximation is then subjected to an inverse of the linear approximation of the frequency response of the BBPLL that produces a very accurate &thgr;. This is conveniently achieved with a IIR filter whose transfer function happens to be the same as the inverse of the linear approximation of the frequency response of the BBPLL. The derivative is then taken of &thgr; to produce a very accurate d&thgr;/dt, the desired result for the output of an FM demodulator. To aid operation of the BBPLL, the incoming digital intermediate frequency is upsampled by a combination of sample and hold and FIR filtering prior to being processed by the BBPLL.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: November 11, 2003
    Assignee: Motorola, Inc.
    Inventors: Junsong Li, Jon D. Hendrix, Raghu G. Raj
  • Publication number: 20030184368
    Abstract: A digital FM demodulator employs a baseband phase lock loop (BBPLL), which is particularly effective for long range reception, for combining and demodulating a pair of signals represented by the mathematical expression A(t)ej&thgr;(t) to result in an approximation of d&thgr;/dt. This approximation is then subjected to an inverse of the linear approximation of the frequency response of the BBPLL that produces a very accurate &thgr;. This is conveniently achieved with a IIR filter whose transfer function happens to be the same as the inverse of the linear approximation of the frequency response of the BBPLL. The derivative is then taken of &thgr; to produce a very accurate d&thgr;/dt, the desired result for the output of an FM demodulator. To aid operation of the BBPLL, the incoming digital intermediate frequency is upsampled by a combination of sample and hold and FIR filtering prior to being processed by the BBPLL.
    Type: Application
    Filed: April 2, 2002
    Publication date: October 2, 2003
    Inventors: Junsong Li, Jon D. Hendrix, Raghu G. Raj
  • Publication number: 20030087618
    Abstract: A cost effective digital stereo decoder (216) for Digitized Intermediate Frequency (DIF) FM radio receiver (100). After FM demodulation (212), a multiplex signal (MPX) at a high sampling rate is mixed with free-running local quadrature mixers (308, 320) to shift the (L−R) stereo signal to baseband. The MPX signal is also mixed with a free-running locally generated carrier signal to translate an embedded 19 KHz pilot tone signal to 1 KHz. The pilot tone signal is decimated to a low sampling rate to permit a phase-lock loop (PLL) to be applied to the lower rate signal to estimate the phase of the pilot signal. An FM blender controller is used to attenuate high frequency noise and improve audio quality. The receiver may be implemented in software and be customer configurable to have various operating characteristics.
    Type: Application
    Filed: November 8, 2001
    Publication date: May 8, 2003
    Inventors: Junsong Li, Kai Tan
  • Publication number: 20030035498
    Abstract: Embodiments of the present invention relate generally to receivers. One embodiment relates to a digital FM receiver having multiple sensors (e.g. antennas). In one embodiment, the digital receiver includes a baseband unit having a channel processing unit. In one embodiment, the channel processing unit is capable of calculating or estimating a phase difference between the incoming signals prior to combining them. One embodiment uses phase estimation method for diversity combining the signals while another embodiment utlizes a hybrid phase lock loop method. Also, some embodiments of the present invention provide for echo-cancelling after diversity combining. An alternate embodiment of the channel processing unit utilizes a space-time unit to diversity combine and provide echo cancelling for the incoming signals.
    Type: Application
    Filed: July 27, 2001
    Publication date: February 20, 2003
    Inventors: Junsong Li, Yui-Luen Ho
  • Publication number: 20030026365
    Abstract: Embodiments of the present invention relate generally to receivers. One embodiment relates to a digital FM receiver having multiple sensors (e.g. antennas). In one embodiment, the digital receiver includes a baseband unit having a channel processing unit. In one embodiment, the channel processing unit is capable of calculating or estimating a phase difference between the incoming signals prior to combining them. One embodiment uses phase estimation method for diversity combining the signals while another embodiment utlizes a hybrid phase lock loop method. Also, some embodiments of the present invention provide for echo-cancelling after diversity combining. An alternate embodiment of the channel processing unit utilizes a space-time unit to diversity combine and provide echo cancelling for the incoming signals.
    Type: Application
    Filed: July 27, 2001
    Publication date: February 6, 2003
    Inventors: Yui-Luen Ho, Junsong Li, Azfar Inayatullah
  • Publication number: 20030022647
    Abstract: Embodiments of the present invention relate generally to receivers. One embodiment relates to a digital FM receiver having multiple sensors (e.g. antennas). In one embodiment, the digital receiver includes a baseband unit having a channel processing unit. In one embodiment, the channel processing unit is capable of calculating or estimating a phase difference between the incoming signals prior to combining them. One embodiment uses phase estimation method for diversity combining the signals while another embodiment utlizes a hybrid phase lock loop method. Also, some embodiments of the present invention provide for echo-cancelling after diversity combining. An alternate embodiment of the channel processing unit utilizes a space-time unit to diversity combine and provide echo cancelling for the incoming signals.
    Type: Application
    Filed: July 27, 2001
    Publication date: January 30, 2003
    Inventors: Junsong Li, Jon D. Hendrix, Charles E. Seaberg
  • Publication number: 20020142746
    Abstract: A radio receiver (100) has an IF (intermediate frequency) filter (200) for dynamically adjusting its intermediate frequency. The filter (200) includes a filter bank (301), power/amplitude estimator circuits (308, 310, 312), and weighting circuits (314, 316, 318). The filter bank (301) generates sub-bands, each sub-band having a predetermined frequency range. The power/amplitude estimators (308, 310, 312) provide an estimated power/amplitude in each sub-band. A filter control (320) uses the power/amplitude estimates to determine a percentage of each sub-band signal that is permitted to be coupled a summation circuit (319). The summation circuit (319) sums the weighted sub-band signals to provide a filtered output signal to a demodulator (212).
    Type: Application
    Filed: March 28, 2001
    Publication date: October 3, 2002
    Inventors: Junsong Li, Charles E. Seaberg, Jie Su
  • Publication number: 20020126771
    Abstract: A demodulator (20) extracts a digital sub-carrier signal from a modulated signal and provides the sub-carrier signal in clock and data format. Demodulation occurs with two mixing stages (32, 40, 42) and at sampling frequencies that are independent from the frequency of transmission of the modulated signal. Matched filters (44, 46) try to match the received sub-carrier signal with a predefined bi-phase pulse shape. Phase correction is applied at a low sampling frequency. After phase correction, digital interpolation is used to re-sample the sub-carrier signal.
    Type: Application
    Filed: March 12, 2001
    Publication date: September 12, 2002
    Inventors: Junsong Li, Azfar Inayatullah, Yui-Luen Ho