Patents by Inventor Kai-Erik Elers

Kai-Erik Elers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10297444
    Abstract: Methods of producing metal-containing thin films with low impurity contents on a substrate by atomic layer deposition (ALD) are provided. The methods preferably comprise contacting a substrate with alternating and sequential pulses of a metal source chemical, a second source chemical and a deposition enhancing agent. The deposition enhancing agent is preferably selected from the group consisting of hydrocarbons, hydrogen, hydrogen plasma, hydrogen radicals, silanes, germanium compounds, nitrogen compounds, and boron compounds. In some embodiments, the deposition-enhancing agent reacts with halide contaminants in the growing thin film, improving film properties.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: May 21, 2019
    Assignee: ASM International N.V.
    Inventors: Antti Rahtu, Eva Tois, Kai-Erik Elers, Wei-Min Li
  • Patent number: 10139313
    Abstract: A capacitive pressure sensor for an internal combustion engine is provided having a housing having a bottom surface, variable capacitor and circuitry. The variable capacitor is formed by a stationary electrode and an elastically bendable electrode. Pressure exerted on the bottom surface acts to bend the elastically bendable electrode. This bending alters the capacitance of the variable capacitor. The circuitry is configured to generate a signal based on the variable capacitance of the variable capacitor. This capacitance is representative of the pressure exerted on the bottom surface.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: November 27, 2018
    Assignee: TEKNOLOGIAN TUTKIMUSKESKUS VTT OY
    Inventors: Teuvo Sillanpää, Panu Koppinen, Kai-Erik Elers
  • Publication number: 20180130666
    Abstract: Methods of producing metal-containing thin films with low impurity contents on a substrate by atomic layer deposition (ALD) are provided. The methods preferably comprise contacting a substrate with alternating and sequential pulses of a metal source chemical, a second source chemical and a deposition enhancing agent. The deposition enhancing agent is preferably selected from the group consisting of hydrocarbons, hydrogen, hydrogen plasma, hydrogen radicals, silanes, germanium compounds, nitrogen compounds, and boron compounds. In some embodiments, the deposition-enhancing agent reacts with halide contaminants in the growing thin film, improving film properties.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 10, 2018
    Inventors: Antti Rahtu, Eva Tois, Kai-Erik Elers, Wei-Min Li
  • Patent number: 9831094
    Abstract: Methods of producing metal-containing thin films with low impurity contents on a substrate by atomic layer deposition (ALD) are provided. The methods preferably comprise contacting a substrate with alternating and sequential pulses of a metal source chemical, a second source chemical and a deposition enhancing agent. The deposition enhancing agent is preferably selected from the group consisting of hydrocarbons, hydrogen, hydrogen plasma, hydrogen radicals, silanes, germanium compounds, nitrogen compounds, and boron compounds. In some embodiments, the deposition-enhancing agent reacts with halide contaminants in the growing thin film, improving film properties.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: November 28, 2017
    Assignee: ASM INTERNATIONAL N.V.
    Inventors: Antti Rahtu, Eva Tois, Kai-Erik Elers, Wei-Min Li
  • Publication number: 20170023440
    Abstract: A capacitive pressure sensor for an internal combustion engine is provided having a housing having a bottom surface, variable capacitor and circuitry. The variable capacitor is formed by a stationary electrode and an elastically bendable electrode. Pressure exerted on the bottom surface acts to bend the elastically bendable electrode. This bending alters the capacitance of the variable capacitor. The circuitry is configured to generate a signal based on the variable capacitance of the variable capacitor. This capacitance is representative of the pressure exerted on the bottom surface.
    Type: Application
    Filed: July 22, 2015
    Publication date: January 26, 2017
    Inventors: Teuvo Sillanpää, Panu Koppinen, Kai-Erik Elers
  • Publication number: 20160118262
    Abstract: Methods of producing metal-containing thin films with low impurity contents on a substrate by atomic layer deposition (ALD) are provided. The methods preferably comprise contacting a substrate with alternating and sequential pulses of a metal source chemical, a second source chemical and a deposition enhancing agent. The deposition enhancing agent is preferably selected from the group consisting of hydrocarbons, hydrogen, hydrogen plasma, hydrogen radicals, silanes, germanium compounds, nitrogen compounds, and boron compounds. In some embodiments, the deposition-enhancing agent reacts with halide contaminants in the growing thin film, improving film properties.
    Type: Application
    Filed: July 29, 2015
    Publication date: April 28, 2016
    Inventors: Antti Rahtu, Eva Tois, Kai-Erik Elers, Wei-Min Li
  • Patent number: 9217200
    Abstract: Methods of forming thin films on nanopatterning templates, such as nanoimprint lithography (NIL) templates are provided. In some embodiments, an atomic layer deposition (ALD) type process for modifying the surface of a NIL template comprises alternately and sequentially contacting a substrate in a reaction space with vapor phase pulses of two or more reactants.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: December 22, 2015
    Assignee: ASM INTERNATIONAL N.V.
    Inventors: Suvi P. Haukka, Kai-Erik Elers
  • Patent number: 9127351
    Abstract: Methods of producing metal-containing thin films with low impurity contents on a substrate by atomic layer deposition (ALD) are provided. The methods preferably comprise contacting a substrate with alternating and sequential pulses of a metal source chemical, a second source chemical and a deposition enhancing agent. The deposition enhancing agent is preferably selected from the group consisting of hydrocarbons, hydrogen, hydrogen plasma, hydrogen radicals, silanes, germanium compounds, nitrogen compounds, and boron compounds. In some embodiments, the deposition-enhancing agent reacts with halide contaminants in the growing thin film, improving film properties.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: September 8, 2015
    Assignee: ASM International N.V.
    Inventors: Antti Rahtu, Eva Tois, Kai-Erik Elers, Wei-Min Li
  • Patent number: 8993055
    Abstract: Methods of producing metal-containing thin films with low impurity contents on a substrate by atomic layer deposition (ALD) are provided. The methods preferably comprise contacting a substrate with alternating and sequential pulses of a metal source chemical, a second source chemical and a deposition enhancing agent. The deposition enhancing agent is preferably selected from the group consisting of hydrocarbons, hydrogen, hydrogen plasma, hydrogen radicals, silanes, germanium compounds, nitrogen compounds, and boron compounds. In some embodiments, the deposition-enhancing agent reacts with halide contaminants in the growing thin film, improving film properties.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: March 31, 2015
    Assignee: ASM International N.V.
    Inventors: Antti Rahtu, Eva Tois, Kai-Erik Elers, Wei-Min Li
  • Patent number: 8809195
    Abstract: A dry etch method, apparatus, and system for etching a high-k material comprises sequentially contacting the high-k material with a vapor phase reducing agent, and a volatilizing etchant in a cyclical process. In some preferred embodiments, the reducing agent and/or volatilizing etchant is plasma activated. Control over etch rate and/or selectivity are improved by the pulsed process, where, in some embodiments, each step in the cyclical process has a self-limited extent of etching. Embodiments of the method are useful in the fabrication of integrated devices, as well as for cleaning process chambers.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: August 19, 2014
    Assignee: ASM America, Inc.
    Inventor: Kai-Erik Elers
  • Patent number: 8536058
    Abstract: A method for forming a conductive thin film includes depositing a metal oxide thin film on a substrate by an atomic layer deposition (ALD) process. The method further includes at least partially reducing the metal oxide thin film by exposing the metal oxide thin film to a reducing agent, thereby forming a seed layer. In one arrangement, the reducing agent comprises one or more organic compounds that contain at least one functional group selected from the group consisting of —OH, —CHO, and —COOH. In another arrangement, the reducing agent comprises an electric current.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: September 17, 2013
    Assignee: ASM International N.V.
    Inventors: Juhana Kostamo, Pekka J. Soininen, Kai-Erik Elers, Suvi Haukka
  • Patent number: 8334218
    Abstract: In one aspect, non-conformal layers are formed by variations of plasma enhanced atomic layer deposition, where one or more of pulse duration, separation, RF power on-time, reactant concentration, pressure and electrode spacing are varied from true self-saturating reactions to operate in a depletion-effect mode. Deposition thus takes place close to the substrate surface but is controlled to terminate after reaching a specified distance into openings (e.g., deep DRAM trenches, pores, etc.). Reactor configurations that are suited to such modulation include showerhead, in situ plasma reactors, particularly with adjustable electrode spacing.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: December 18, 2012
    Assignee: ASM America, Inc.
    Inventors: Sebastian E. Van Nooten, Jan Willem Maes, Steven Marcus, Glen Wilk, Petri Räisänen, Kai-Erik Elers
  • Patent number: 8268409
    Abstract: Methods of forming a metal carbide film are provided. In some embodiments, methods for forming a metal carbide film in an atomic layer deposition (ALD) type process comprise alternately and sequentially contacting a substrate in a reaction space with vapor phase pulses of a metal compound and one or more plasma-excited species of a carbon-containing compound. In other embodiments, methods of forming a metal carbide film in a chemical vapor deposition (CVD) type process comprise simultaneously contacting a substrate in a reaction space with a metal compound and one or more plasma-excited species of a carbon-containing compound. The substrate is further exposed to a reducing agent. The reducing agent removes impurities, including halogen atoms and/or oxygen atoms.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: September 18, 2012
    Assignee: ASM America, Inc.
    Inventors: Kai-Erik Elers, Glen Wilk, Steven Marcus
  • Publication number: 20120028474
    Abstract: A method for forming a conductive thin film includes depositing a metal oxide thin film on a substrate by an atomic layer deposition (ALD) process. The method further includes at least partially reducing the metal oxide thin film by exposing the metal oxide thin film to a reducing agent, thereby forming a seed layer. In one arrangement, the reducing agent comprises one or more organic compounds that contain at least one functional group selected from the group consisting of —OH, —CHO, and —COOH. In another arrangement, the reducing agent comprises an electric current.
    Type: Application
    Filed: June 3, 2011
    Publication date: February 2, 2012
    Inventors: Juhana Kostamo, Pekka J. Soininen, Kai-Erik Elers, Suvi Haukka
  • Publication number: 20110146568
    Abstract: Methods of forming thin films on nanopatterning templates, such as nanoimprint lithography (NIL) templates are provided. In some embodiments, an atomic layer deposition (ALD) type process for modifying the surface of a NIL template comprises alternately and sequentially contacting a substrate in a reaction space with vapor phase pulses of two or more reactants.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 23, 2011
    Applicant: ASM International N.V.
    Inventors: Suvi P. Haukka, Kai-Erik Elers
  • Patent number: 7955979
    Abstract: A method for forming a conductive thin film includes depositing a metal oxide thin film on a substrate by an atomic layer deposition (ALD) process. The method further includes at least partially reducing the metal oxide thin film by exposing the metal oxide thin film to a reducing agent, thereby forming a seed layer. In one arrangement, the reducing agent comprises one or more organic compounds that contain at least one functional group selected from the group consisting of —OH, —CHO, and —COOH. In another arrangement, the reducing agent comprises an electric current.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: June 7, 2011
    Assignee: ASM International N.V.
    Inventors: Juhana Kostamo, Pekka J. Soininen, Kai-Erik Elers, Suvi Haukka
  • Patent number: 7749871
    Abstract: The present method provides tools for growing conformal metal nitride, metal carbide and metal thin films, and nanolaminate structures incorporating these films, from aggressive chemicals. The amount of corrosive chemical compounds, such as hydrogen halides, is reduced during the deposition of transition metal, transition metal carbide and transition metal nitride thin films on various surfaces, such as metals and oxides. Getter compounds protect surfaces sensitive to hydrogen halides and ammonium halides, such as aluminum, copper, silicon oxide and the layers being deposited, against corrosion. Nanolaminate structures (20) incorporating metal nitrides, such as titanium nitride (30) and tungsten nitride (40), and metal carbides, and methods for forming the same, are also disclosed.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: July 6, 2010
    Assignee: ASM International N.V.
    Inventors: Kai-Erik Elers, Suvi P. Haukka, Ville Antero Saanila, Sari Johanna Kaipio, Pekka Juha Soininen
  • Patent number: 7727864
    Abstract: Metallic-compound films are formed by plasma-enhanced atomic layer deposition (PEALD). According to preferred methods, film or thin film composition is controlled by selecting plasma parameters to tune the oxidation state of a metal (or plurality of metals) in the film. In some embodiments, plasma parameters are selected to achieve metal-rich metallic-compound films. The metallic-compound films can be components of gate stacks, such as gate electrodes. Plasma parameters can be selected to achieve a gate stack with a predetermined work function.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: June 1, 2010
    Assignee: ASM America, Inc.
    Inventor: Kai-Erik Elers
  • Publication number: 20100099264
    Abstract: A dry etch method, apparatus, and system for etching a high-k material comprises sequentially contacting the high-k material with a vapor phase reducing agent, and a volatilizing etchant in a cyclical process. In some preferred embodiments, the reducing agent and/or volatilizing etchant is plasma activated. Control over etch rate and/or selectivity are improved by the pulsed process, where, in some embodiments, each step in the cyclical process has a self-limited extent of etching. Embodiments of the method are useful in the fabrication of integrated devices, as well as for cleaning process chambers.
    Type: Application
    Filed: October 20, 2008
    Publication date: April 22, 2010
    Applicant: ASM AMERICA, INC.
    Inventor: Kai-Erik Elers
  • Patent number: 7670944
    Abstract: Method and structures are provided for conformal lining of dual damascene structures in integrated circuits. Trenches and contact vias are formed in insulating layers. The trenches and vias are exposed to alternating chemistries to form monolayers of a desired lining material. Exemplary process flows include alternately pulsed metal halide and ammonia gases injected into a constant carrier flow. Self-terminated metal layers are thus reacted with nitrogen. Near perfect step coverage allows minimal thickness for a diffusion barrier function, thereby maximizing the volume of a subsequent filling metal for any given trench and via dimensions.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: March 2, 2010
    Assignee: ASM International N.V.
    Inventors: Ivo Raaijmakers, Suvi P. Haukka, Ville A. Saanila, Pekka J. Soininen, Kai-Erik Elers, Ernst H.A. Granneman