Patents by Inventor Kai-Erik Elers

Kai-Erik Elers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100099264
    Abstract: A dry etch method, apparatus, and system for etching a high-k material comprises sequentially contacting the high-k material with a vapor phase reducing agent, and a volatilizing etchant in a cyclical process. In some preferred embodiments, the reducing agent and/or volatilizing etchant is plasma activated. Control over etch rate and/or selectivity are improved by the pulsed process, where, in some embodiments, each step in the cyclical process has a self-limited extent of etching. Embodiments of the method are useful in the fabrication of integrated devices, as well as for cleaning process chambers.
    Type: Application
    Filed: October 20, 2008
    Publication date: April 22, 2010
    Applicant: ASM AMERICA, INC.
    Inventor: Kai-Erik Elers
  • Patent number: 7670944
    Abstract: Method and structures are provided for conformal lining of dual damascene structures in integrated circuits. Trenches and contact vias are formed in insulating layers. The trenches and vias are exposed to alternating chemistries to form monolayers of a desired lining material. Exemplary process flows include alternately pulsed metal halide and ammonia gases injected into a constant carrier flow. Self-terminated metal layers are thus reacted with nitrogen. Near perfect step coverage allows minimal thickness for a diffusion barrier function, thereby maximizing the volume of a subsequent filling metal for any given trench and via dimensions.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: March 2, 2010
    Assignee: ASM International N.V.
    Inventors: Ivo Raaijmakers, Suvi P. Haukka, Ville A. Saanila, Pekka J. Soininen, Kai-Erik Elers, Ernst H.A. Granneman
  • Publication number: 20100022099
    Abstract: In one aspect, non-conformal layers are formed by variations of plasma enhanced atomic layer deposition, where one or more of pulse duration, separation, RF power on-time, reactant concentration, pressure and electrode spacing are varied from true self-saturating reactions to operate in a depletion-effect mode. Deposition thus takes place close to the substrate surface but is controlled to terminate after reaching a specified distance into openings (e.g., deep DRAM trenches, pores, etc.). Reactor configurations that are suited to such modulation include showerhead, in situ plasma reactors, particularly with adjustable electrode spacing.
    Type: Application
    Filed: October 2, 2009
    Publication date: January 28, 2010
    Applicant: ASM AMERICA, INC.
    Inventors: Sebastian E. Van Nooten, Jan Willem Maes, Steven Marcus, Glen Wilk, Petri Räisänen, Kai-Erik Elers
  • Patent number: 7611751
    Abstract: Methods of forming metal carbide thin films are provided. According to preferred embodiments, metal carbide thin films are formed in an atomic layer deposition (ALD) process by alternately and sequentially contacting a substrate in a reaction space with spatially and temporally separated vapor phase pulses of a metal source chemical, a reducing agent and a carbon source chemical. The reducing agent is preferably selected from the group consisting of excited species of hydrogen and silicon-containing compounds.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: November 3, 2009
    Assignee: ASM America, Inc.
    Inventor: Kai-Erik Elers
  • Patent number: 7608549
    Abstract: In one aspect, non-conformal layers are formed by variations of plasma enhanced atomic layer deposition, where one or more of pulse duration, separation, RF power on-time, reactant concentration, pressure and electrode spacing are varied from true self-saturating reactions to operate in a depletion-effect mode. Deposition thus takes place close to the substrate surface but is controlled to terminate after reaching a specified distance into openings (e.g., deep DRAM trenches, pores, etc.). Reactor configurations that are suited to such modulation include showerhead, in situ plasma reactors, particularly with adjustable electrode spacing.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: October 27, 2009
    Assignee: ASM America, Inc.
    Inventors: Sebastian E. Van Nooten, Jan Willem Maes, Steven Marcus, Glen Wilk, Petri Räisänen, Kai-Erik Elers
  • Patent number: 7598170
    Abstract: Methods of controllably producing conductive tantalum nitride films are provided. The methods comprise contacting a substrate in a reaction space with alternating and sequential pulses of a tantalum source material, plasma-excited species of hydrogen and nitrogen source material. The plasma-excited species of hydrogen reduce the oxidation state of tantalum, thereby forming a substantially conductive tantalum nitride film over the substrate. In some embodiments, the plasma-excited species of hydrogen react with and removes halide residues in a deposited metallic film.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: October 6, 2009
    Assignee: ASM America, Inc.
    Inventor: Kai-Erik Elers
  • Patent number: 7595270
    Abstract: Methods for forming passivated stoichiometric metal nitride films are provided along with structures incorporating such films. The preferred methods include contacting a substrate with alternating and sequential pulses of a metal source chemical, one or more plasma-excited species of hydrogen and a nitrogen source chemical to form a stoichiometric metal nitride film, followed by exposure of the stoichiometric metal nitride film to a source chemical of a passivating species to form a passivation layer over the stoichiometric metal nitride film.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: September 29, 2009
    Assignee: ASM America, Inc.
    Inventors: Kai-Erik Elers, Steven Marcus
  • Patent number: 7494927
    Abstract: A method for forming a conductive thin film includes depositing a metal oxide thin film on a substrate by an atomic layer deposition (ALD) process. The method further includes at least partially reducing the metal oxide thin film by exposing the metal oxide thin film to a reducing agent, thereby forming a seed layer. In one arrangement, the reducing agent comprises one or more organic compounds that contain at least one functional group selected from the group consisting of —OH, —CHO, and —COOH. In another arrangement, the reducing agent comprises an electric current.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: February 24, 2009
    Assignee: ASM International N.V.
    Inventors: Juhana Kostamo, Pekka J. Soininen, Kai-Erik Elers, Suvi Haukka
  • Patent number: 7485340
    Abstract: The present invention relates generally to depositing elemental thin films. In particular, the invention concerns a method of growing elemental metal thin films by Atomic Layer Deposition (ALD) using a boron compound as a reducing agent. In a preferred embodiment the method comprises introducing vapor phase pulses of at least one metal source compound and at least one boron source compound into a reaction space that contains a substrate on which the metal thin film is to be deposited. Preferably the boron compound is capable of reducing the adsorbed portion of the metal source compound into its elemental electrical state.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: February 3, 2009
    Assignee: ASM International N.V.
    Inventors: Kai-Erik Elers, Ville Antero Saanila, Sari Johanna Kaipio, Pekka Juha Soininen
  • Patent number: 7465658
    Abstract: A method is proposed for improving the adhesion between a diffusion barrier film and a metal film. Both the diffusion barrier film and the metal film can be deposited in either sequence onto a semiconductor substrate. A substrate comprising a first film, which is one of a diffusion barrier film or a metal film, with the first film being exposed at least at part of the surface area of the substrate, is exposed to an oxygen-containing reactant to create a surface termination of about one monolayer of oxygen-containing groups or oxygen atoms on the exposed parts of the first film. Then the second film, which is the other one of a diffusion barrier film and a metal film, is deposited onto the substrate. Furthermore, an oxygen bridge structure is proposed, the structure comprising a diffusion barrier film and a metal film having an interface with the diffusion barrier film, wherein the interface comprises a monolayer of oxygen atoms.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: December 16, 2008
    Assignee: ASM America, Inc.
    Inventors: Ivo Raaijmakers, Pekka J. Soininen, Kai-Erik Elers
  • Publication number: 20080182410
    Abstract: Methods for forming passivated stoichiometric metal nitride films are provided along with structures incorporating such films. The preferred methods include contacting a substrate with alternating and sequential pulses of a metal source chemical, one or more plasma-excited species of hydrogen and a nitrogen source chemical to form a stoichiometric metal nitride film, followed by exposure of the stoichiometric metal nitride film to a source chemical of a passivating species to form a passivation layer over the stoichiometric metal nitride film.
    Type: Application
    Filed: January 26, 2007
    Publication date: July 31, 2008
    Applicant: ASM AMERICA, INC.
    Inventors: Kai-Erik Elers, Steven Marcus
  • Publication number: 20080182411
    Abstract: Methods of controllably producing conductive tantalum nitride films are provided. The methods comprise contacting a substrate in a reaction space with alternating and sequential pulses of a tantalum source material, plasma-excited species of hydrogen and nitrogen source material. The plasma-excited species of hydrogen reduce the oxidation state of tantalum, thereby forming a substantially conductive tantalum nitride film over the substrate. In some embodiments, the plasma-excited species of hydrogen react with and removes halide residues in a deposited metallic film.
    Type: Application
    Filed: January 26, 2007
    Publication date: July 31, 2008
    Applicant: ASM AMERICA, INC.
    Inventor: Kai-Erik Elers
  • Publication number: 20080146042
    Abstract: A method for forming a conductive thin film includes depositing a metal oxide thin film on a substrate by an atomic layer deposition (ALD) process. The method further includes at least partially reducing the metal oxide thin film by exposing the metal oxide thin film to a reducing agent, thereby forming a seed layer. In one arrangement, the reducing agent comprises one or more organic compounds that contain at least one functional group selected from the group consisting of —OH, —CHO, and —COOH. In another arrangement, the reducing agent comprises an electric current.
    Type: Application
    Filed: February 28, 2008
    Publication date: June 19, 2008
    Applicant: ASM International N.V.
    Inventors: Juhana Kostamo, Pekka J. Soininen, Kai-Erik Elers, Suvi Haukka
  • Publication number: 20080113110
    Abstract: Methods of forming a metal carbide film are provided. In some embodiments, methods for forming a metal carbide film in an atomic layer deposition (ALD) type process comprise alternately and sequentially contacting a substrate in a reaction space with vapor phase pulses of a metal compound and one or more plasma-excited species of a carbon-containing compound. In other embodiments, methods of forming a metal carbide film in a chemical vapor deposition (CVD) type process comprise simultaneously contacting a substrate in a reaction space with a metal compound and one or more plasma-excited species of a carbon-containing compound. The substrate is further exposed to a reducing agent.
    Type: Application
    Filed: October 16, 2007
    Publication date: May 15, 2008
    Applicant: ASM America, Inc.
    Inventors: Kai-Erik Elers, Glen Wilk, Steven Marcus
  • Publication number: 20080102613
    Abstract: Metallic-compound films are formed by plasma-enhanced atomic layer deposition (PEALD). According to preferred methods, film or thin film composition is controlled by selecting plasma parameters to tune the oxidation state of a metal (or plurality of metals) in the film. In some embodiments, plasma parameters are selected to achieve metal-rich metallic-compound films. The metallic-compound films can be components of gate stacks, such as gate electrodes. Plasma parameters can be selected to achieve a gate stack with a predetermined work function.
    Type: Application
    Filed: November 1, 2006
    Publication date: May 1, 2008
    Inventor: Kai-Erik Elers
  • Publication number: 20080102204
    Abstract: Methods of forming metal carbide thin films are provided. According to preferred embodiments, metal carbide thin films are formed in an atomic layer deposition (ALD) process by alternately and sequentially contacting a substrate in a reaction space with spatially and temporally separated vapor phase pulses of a metal source chemical, a reducing agent and a carbon source chemical. The reducing agent is preferably selected from the group consisting of excited species of hydrogen and silicon-containing compounds.
    Type: Application
    Filed: November 1, 2006
    Publication date: May 1, 2008
    Inventor: Kai-Erik Elers
  • Patent number: 7329590
    Abstract: The present method provides tools for growing conformal metal nitride, metal carbide and metal thin films, and nanolaminate structures incorporating these films, from aggressive chemicals. The amount of corrosive chemical compounds, such as hydrogen halides, is reduced during the deposition of transition metal, transition metal carbide and transition metal nitride thin films on various surfaces, such as metals and oxides. Getter compounds protect surfaces sensitive to hydrogen halides and ammonium halides, such as aluminum, copper, silicon oxide and the layers being deposited, against corrosion. Nanolaminate structures (20) incorporating metal nitrides, such as titanium nitride (30) and tungsten nitride (40), and metal carbides, and methods for forming the same, are also disclosed.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: February 12, 2008
    Assignee: ASM International N.V.
    Inventors: Kai-Erik Elers, Suvi P. Haukka, Ville Antero Saanila, Sari Johanna Kaipio, Pekka Juha Soininen
  • Publication number: 20070190248
    Abstract: The present invention relates generally to depositing elemental thin films. In particular, the invention concerns a method of growing elemental metal thin films by Atomic Layer Deposition (ALD) using a boron compound as a reducing agent. In a preferred embodiment the method comprises introducing vapor phase pulses of at least one metal source compound and at least one boron source compound into a reaction space that contains a substrate on which the metal thin film is to be deposited. Preferably the boron compound is capable of reducing the adsorbed portion of the metal source compound into its elemental electrical state.
    Type: Application
    Filed: December 5, 2006
    Publication date: August 16, 2007
    Inventors: Kai-Erik Elers, Ville Saanila, Sari Kaipio, Pekka Soininen
  • Patent number: 7241677
    Abstract: This invention concerns a process for producing integrated circuits containing at least one layer of elemental metal which during the processing of the integrated circuit is at least partly in the form of metal oxide, and the use of an organic compound containing certain functional groups for the reduction of a metal oxide layer formed during the production of an integrated circuit. According to the present process the metal oxide layer is at least partly reduced to elemental metal with a reducing agent selected from organic compounds containing one or more of the following functional groups: alcohol (—OH), aldehyde (—CHO), and carboxylic acid (—COOH).
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: July 10, 2007
    Assignee: ASM International N.V.
    Inventors: Pekka Juha Soininen, Kai-Erik Elers
  • Publication number: 20070148350
    Abstract: Methods of producing metal-containing thin films with low impurity contents on a substrate by atomic layer deposition (ALD) are provided. The methods preferably comprise contacting a substrate with alternating and sequential pulses of a metal source chemical, a second source chemical and a deposition enhancing agent. The deposition enhancing agent is preferably selected from the group consisting of hydrocarbons, hydrogen, hydrogen plasma, hydrogen radicals, silanes, germanium compounds, nitrogen compounds, and boron compounds. In some embodiments, the deposition-enhancing agent reacts with halide contaminants in the growing thin film, improving film properties.
    Type: Application
    Filed: October 27, 2006
    Publication date: June 28, 2007
    Inventors: Antti Rahtu, Eva Tois, Kai-Erik Elers, Wei-Min Li