Patents by Inventor Kai-Hung Yu

Kai-Hung Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10056328
    Abstract: A method is provided for at least partially filling a feature in a substrate. The method includes providing a substrate containing a feature, depositing a ruthenium (Ru) metal layer to at least partially fill the feature, and heat-treating the substrate to reflow the Ru metal layer in the feature.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: August 21, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Kai-Hung Yu, Gerrit J. Leusink, Cory Wajda, Tadahiro Ishizaka, Takahiro Hakamata
  • Publication number: 20180211870
    Abstract: A semiconductor device is provided. The semiconductor device can have a substrate including dielectric material. A plurality of narrow interconnect openings can be formed within said dielectric material. In addition, a plurality of wide interconnect openings can be formed within said dielectric material. The semiconductor device can include a first metal filling the narrow interconnect openings to form an interconnect structure and conformally covering a surface of the wide interconnect openings formed in the dielectric material, and a second metal formed over the first metal and encapsulated by the first metal to form another interconnect structure within the wide interconnect openings.
    Type: Application
    Filed: January 19, 2018
    Publication date: July 26, 2018
    Inventors: Soo Doo CHAE, Jeffrey SMITH, Gerrit J. LEUSINK, Robert D. CLARK, Kai-Hung YU
  • Patent number: 10027332
    Abstract: Referenceless clock and data recovery circuits are described that operate to align the clock/data strobe with each data eye to achieve a low bit error rate. The appropriate frequency and phase to be used is determined by an edge counter based frequency error detector and a phase error detector.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: July 17, 2018
    Assignee: Pericom Semiconductor Corporation
    Inventors: Jin-sheng Wang, Kai Hung Yu
  • Patent number: 10014213
    Abstract: A method for selective bottom-up filling of recessed features with a low resistivity metal for semiconductor devices is described in several embodiments. The method includes providing a substrate containing a patterned dielectric layer having a recessed feature with dielectric layer surfaces and a metal-containing surface on a bottom of the recessed feature, reacting the dielectric layer surfaces with a reactant gas containing a hydrophobic functional group to form hydrophobic dielectric layer surfaces, and at least substantially filling the recessed feature with a metal in a bottom-up gas phase deposition process that hinders deposition of the metal on the hydrophobic dielectric layer surfaces. According to one embodiment, the metal is selected from the group consisting of ruthenium (Ru), cobalt (Co), aluminum (Al), iridium (Ir), iridium (Ir), rhodium (Rh), osmium (Os), palladium (Pd), platinum (Pt), nickel (Ni), and a combination thereof.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: July 3, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Kai-Hung Yu, Kandabara N. Tapily, Robert D. Clark, Gerrit J. Leusink
  • Publication number: 20180053688
    Abstract: A method of void-less metal filling of recessed features in a substrate is provided. The method includes providing a substrate containing recessed features therein, and filling the recessed features with a metal, where the metal is deposited in the recessed features by gas phase deposition at substrate temperature and a gas pressure that promotes bottom-up void-less filling. According to one embodiment, the metal is selected from the group consisting of Ru, Rh, Os, Pd, Ir, Pt, Ni, Co, W, and a combination thereof.
    Type: Application
    Filed: August 15, 2017
    Publication date: February 22, 2018
    Inventors: Kai-Hung Yu, Kandabara N. Tapily, Gerrit J. Leusink
  • Publication number: 20170342553
    Abstract: Embodiments of the invention provide methods for selective deposition on different materials using a surface treatment. According to one embodiment, the method includes providing a substrate containing a first material layer having a first surface and a second material layer having a second surface, and performing a chemical oxide removal process that terminates that second surface with hydroxyl groups. The method further includes modifying the second surface by exposure to a process gas containing a hydrophobic functional group, the modifying substituting the hydroxyl groups on the second surface with the hydrophobic functional group, and selectively depositing a metal-containing layer on the first surface but not on the modified second surface by exposing the substrate to a deposition gas.
    Type: Application
    Filed: May 31, 2017
    Publication date: November 30, 2017
    Inventors: Kai-Hung Yu, Kandabara N. Tapily, Takahiro Hakamata, Subhadeep Kal, Gerrit J. Leusink
  • Publication number: 20170317022
    Abstract: A method is provided for at least partially filling a feature in a substrate. The method includes providing a substrate containing a feature, depositing a ruthenium (Ru) metal layer to at least partially fill the feature, and heat-treating the substrate to reflow the Ru metal layer in the feature.
    Type: Application
    Filed: July 17, 2017
    Publication date: November 2, 2017
    Inventors: Kai-Hung Yu, Gerrit J. Leusink, Cory Wajda, Tadahiro Ishizaka, Takahiro Hakamata
  • Publication number: 20170241014
    Abstract: A method for material deposition is described in several embodiments. According to one embodiment, the method includes providing a substrate defining features to receive a deposition of material, initiating a flow of a Ru carbonyl precursor to the substrate, the Ru carbonyl precursor decomposing within the defined features such that a Ru metal film is deposited on surfaces of the defined features and CO gas is released, and stopping the flow of the Ru carbonyl precursor to the substrate. The method further includes flowing additional CO gas to the substrate after stopping the flow of the Ru carbonyl precursor to the substrate, and repeatedly cycling between process steps of flowing the Ru carbonyl precursor to the substrate and flowing the additional CO gas to the substrate. In one embodiment, the Ru carbonyl precursor contains Ru3(CO)12.
    Type: Application
    Filed: February 17, 2017
    Publication date: August 24, 2017
    Inventors: Kai-Hung Yu, Gerrit J. Leusink, Cory Wajda, Tadahiro Ishizaka, Takahiro Hakamata
  • Patent number: 9711449
    Abstract: A method is provided for at least partially filling a feature in a substrate. The method includes providing a substrate containing a feature, depositing a ruthenium (Ru) metal layer to at least partially fill the feature, and heat-treating the substrate to reflow the Ru metal layer in the feature.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: July 18, 2017
    Assignee: Tokyo Electron Limited
    Inventors: Kai-Hung Yu, Gerrit J. Leusink, Cory Wajda, Tadahiro Ishizaka, Takahiro Hakamata
  • Publication number: 20170194192
    Abstract: Embodiments of the invention provide a method for metal filling and planarization of a recessed feature in a substrate. According to one embodiment the method includes providing the substrate containing the recessed feature below a planar surface of the substrate, filling the recessed feature with a metal layer, the metal layer forming excess metal above the recessed feature, oxidizing the excess metal by electrochemical oxidation to form an oxidized metal layer above the planar surface of the recessed feature, and removing the oxidized metal layer by chemical mechanical planarization (CMP). According to another embodiment, the method includes, following the filling, performing a cyclical electrochemical oxidation and etching process that at least substantially removes the excess metal layer above the planar surface of the recessed feature.
    Type: Application
    Filed: December 27, 2016
    Publication date: July 6, 2017
    Inventor: Kai-Hung Yu
  • Publication number: 20170110368
    Abstract: A method for selective bottom-up filling of recessed features with a low resistivity metal for semiconductor devices is described in several embodiments. The method includes providing a substrate containing a patterned dielectric layer having a recessed feature with dielectric layer surfaces and a metal-containing surface on a bottom of the recessed feature, reacting the dielectric layer surfaces with a reactant gas containing a hydrophobic functional group to form hydrophobic dielectric layer surfaces, and at least substantially filling the recessed feature with a metal in a bottom-up gas phase deposition process that hinders deposition of the metal on the hydrophobic dielectric layer surfaces. According to one embodiment, the metal is selected from the group consisting of ruthenium (Ru), cobalt (Co), aluminum (Al), iridium (Ir), iridium (Ir), rhodium (Rh), osmium (Os), palladium (Pd), platinum (Pt), nickel (Ni), and a combination thereof.
    Type: Application
    Filed: October 14, 2016
    Publication date: April 20, 2017
    Inventors: Kai-Hung Yu, Kandabara N. Tapily, Robert D. Clark, Gerrit J. Leusink
  • Patent number: 9607888
    Abstract: Methods for integration of atomic layer deposition (ALD) of barrier layers and chemical vapor deposition (CVD) of Ru liners for Cu filling of narrow recessed features for semiconductor devices are disclosed in several embodiments. According to one embodiment, the method includes providing a substrate containing a recessed feature, depositing a conformal barrier layer by ALD in the recessed feature, where the barrier layer contains TaN or TaAlN, depositing a conformal Ru liner by CVD on the barrier layer, and filling the recessed feature with Cu metal.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: March 28, 2017
    Assignee: Tokyo Electron Limited
    Inventors: Kai-Hung Yu, Toshio Hasegawa, Tadahiro Ishizaka, Manabu Oie, Fumitaka Amano, Steven Consiglio, Cory Wajda, Kaoru Maekawa, Gert J. Leusink
  • Publication number: 20160358815
    Abstract: A method is provided for at least partially filling a feature in a substrate. The method includes providing a substrate containing a feature, depositing a ruthenium (Ru) metal layer to at least partially fill the feature, and heat-treating the substrate to reflow the Ru metal layer in the feature.
    Type: Application
    Filed: June 3, 2016
    Publication date: December 8, 2016
    Inventors: Kai-Hung Yu, Gerrit J. Leusink, Cory Wajda, Tadahiro Ishizaka, Takahiro Hakamata
  • Patent number: 9425093
    Abstract: A Cu wiring forming method of forming Cu wiring that is to be arranged in contact with tungsten wiring, by filling Cu into a recess formed in a substrate, includes: removing a tungsten oxide formed on a surface of the tungsten wiring; forming a nitriding preventing film at least on the surface of the tungsten wiring in the recess; forming a barrier film that prevents diffusion of Cu, on a surface in the recess from above the nitriding preventing film; forming a liner film on the barrier film; and filling a Cu film on the liner film.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: August 23, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Tadahiro Ishizaka, Takashi Sakuma, Osamu Yokoyama, Kai-Hung Yu
  • Publication number: 20160163591
    Abstract: A Cu wiring forming method of forming Cu wiring that is to be arranged in contact with tungsten wiring, by filling Cu into a recess formed in a substrate, includes: removing a tungsten oxide formed on a surface of the tungsten wiring; forming a nitriding preventing film at least on the surface of the tungsten wiring in the recess; forming a barrier film that prevents diffusion of Cu, on a surface in the recess from above the nitriding preventing film; forming a liner film on the barrier film; and filling a Cu film on the liner film.
    Type: Application
    Filed: December 5, 2014
    Publication date: June 9, 2016
    Inventors: Tadahiro ISHIZAKA, Takashi SAKUMA, Osamu YOKOYAMA, Kai-Hung YU
  • Publication number: 20150221550
    Abstract: Methods for integration of atomic layer deposition (ALD) of barrier layers and chemical vapor deposition (CVD) of Ru liners for Cu filling of narrow recessed features for semiconductor devices are disclosed in several embodiments. According to one embodiment, the method includes providing a substrate containing a recessed feature, depositing a conformal barrier layer by ALD in the recessed feature, where the barrier layer contains TaN or TaAlN, depositing a conformal Ru liner by CVD on the barrier layer, and filling the recessed feature with Cu metal.
    Type: Application
    Filed: February 3, 2015
    Publication date: August 6, 2015
    Inventors: Kai-Hung Yu, Toshio Hasegawa, Tadahiro Ishizaka, Manabu Oie, Fumitaka Amano, Steven Consiglio, Cory Wajda, Kaoru Maekawa, Gert J. Leusink