Patents by Inventor Kai-Lin Lee

Kai-Lin Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200204572
    Abstract: Conventional email filtering services are not suitable for recognizing sophisticated malicious emails, and therefore may allow sophisticated malicious emails to reach inboxes by mistake. Introduced here are threat detection platforms designed to take an integrative approach to detecting security threats. For example, after receiving input indicative of an approval from an individual to access past email received by employees of an enterprise, a threat detection platform can download past emails to build a machine learning (ML) model that understands the norms of communication with internal contacts (e.g., other employees) and/or external contacts (e.g., vendors). By applying the ML model to incoming email, the threat detection platform can identify security threats in real time in a targeted manner.
    Type: Application
    Filed: November 4, 2019
    Publication date: June 25, 2020
    Inventors: Sanjay Jeyakumar, Jeshua Alexis Bratman, Dmitry Chechik, Abhijit Bagri, Evan James Reiser, Sanny Xiao Yang Liao, Yu Zhou Lee, Carlos Daniel Gasperi, Kevin Lau, Kai Jing Jiang, Su Li Debbie Tan, Jeremy Kao, Cheng-Lin Yeh
  • Publication number: 20200135582
    Abstract: A method for fabricating semiconductor device includes the steps of: providing a substrate having a first region and a second region; forming a first fin-shaped structure on the first region; forming a first gate structure and a second gate structure on the first fin-shaped structure; using a patterned mask to remove the first gate structure and part of the first fin-shaped structure to form a first trench; and forming a first dielectric layer in the first trench to form a first single diffusion break (SDB) structure and around the second gate structure.
    Type: Application
    Filed: December 23, 2019
    Publication date: April 30, 2020
    Inventors: Zhi-Cheng Lee, Kai-Lin Lee, Wei-Jen Chen
  • Patent number: 10629728
    Abstract: A semiconductor device including a substrate having a fin structure surrounded by a trench isolation region; a trench disposed in the fin structure; a silicon nitride trench-fill layer disposed in the trench; an interlayer dielectric layer disposed on the silicon nitride trench-fill layer; a working gate striding over the fin structure, on the first side of the trench; a dummy gate striding over the fin structure, on the second side of the trench; a doped source region in the fin structure; and a doped drain region in the fin structure. The dummy gate is disposed between the trench and the doped drain region.
    Type: Grant
    Filed: January 20, 2019
    Date of Patent: April 21, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Zhi-Cheng Lee, Wei-Jen Chen, Kai-Lin Lee
  • Patent number: 10629734
    Abstract: A method of fabricating a fin structure with tensile stress includes providing a structure divided into an N-type transistor region and a P-type transistor region. Next, two first trenches and two second trenches are formed in the substrate. The first trenches define a fin structure. The second trenches segment the first trenches and the fin. Later, a flowable chemical vapor deposition is performed to form a silicon oxide layer filling the first trenches and the second trenches. Then, a patterned mask is formed only within the N-type transistor region. The patterned mask only covers the silicon oxide layer in the second trenches. Subsequently, part of the silicon oxide layer is removed to make the exposed silicon oxide layer lower than the top surface of the fin structure by taking the patterned mask as a mask. Finally, the patterned mask is removed.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: April 21, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kai-Lin Lee, Zhi-Cheng Lee, Wei-Jen Chen, Ting-Hsuan Kang, Ren-Yu He, Hung-Wen Huang, Chi-Hsiao Chen, Hao-Hsiang Yang, An-Shih Shih, Chuang-Han Hsieh
  • Patent number: 10566244
    Abstract: A method for fabricating semiconductor device includes the steps of: providing a substrate having a first region and a second region; forming a first fin-shaped structure on the first region; forming a first gate structure and a second gate structure on the first fin-shaped structure; using a patterned mask to remove the first gate structure and part of the first fin-shaped structure to form a first trench; and forming a first dielectric layer in the first trench to form a first single diffusion break (SDB) structure and around the second gate structure.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: February 18, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Zhi-Cheng Lee, Kai-Lin Lee, Wei-Jen Chen
  • Publication number: 20200022462
    Abstract: A harness system with a buckle restraining function includes an upper buckle, an upper strap and a restraining assembly. The upper strap slidably passes through the upper buckle, and the upper strap includes a shoulder portion and a waist portion divided by the upper buckle. The restraining assembly utilizes an anti-sliding structure having a higher coefficient of friction to engage with the upper strap and further utilizes a stopping component to abut against the upper buckle. Therefore, the present invention can effectively restrain a sliding movement of the upper buckle relative to the upper strap and toward the shoulder portion by engagement of the anti-sliding structure and the upper strap and abutment of the stopping component and the upper buckle, which prevents an excessive decrease of a length of the shoulder portion of the upper strap and prevents a potential risk of injury of the passenger's upper body.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 23, 2020
    Inventors: Yen-Lin Lee, Kai-Wen Cheng, Chih-Wei Wang
  • Patent number: 10535525
    Abstract: A method for forming a semiconductor device structure is provided. The method includes providing a semiconductor substrate, a gate structure, a first doped structure, a second doped structure, and a dielectric layer. The method includes forming a through hole in the dielectric layer. The method includes performing a physical vapor deposition process to deposit a first metal layer over the first doped structure exposed by the through hole. The method includes reacting the first metal layer with the first doped structure to form a metal semiconductor compound layer between the first metal layer and the first doped structure. The method includes removing the first metal layer. The method includes performing a chemical vapor deposition process to deposit a second metal layer in the through hole. The method includes forming a conductive structure in the through hole and over the second metal layer.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: January 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-An Lin, Chun-Hsiung Lin, Kai-Hsuan Lee, Sai-Hooi Yeong, Cheng-Yu Yang, Yen-Ting Chen
  • Publication number: 20200006153
    Abstract: A method for fabricating semiconductor device includes the steps of: providing a substrate having a first region and a second region; forming a first fin-shaped structure on the first region; forming a first gate structure and a second gate structure on the first fin-shaped structure; using a patterned mask to remove the first gate structure and part of the first fin-shaped structure to form a first trench; and forming a first dielectric layer in the first trench to form a first single diffusion break (SDB) structure and around the second gate structure.
    Type: Application
    Filed: August 1, 2018
    Publication date: January 2, 2020
    Inventors: Zhi-Cheng Lee, Kai-Lin Lee, Wei-Jen Chen
  • Publication number: 20190172949
    Abstract: A method of fabricating a fin structure with tensile stress includes providing a structure divided into an N-type transistor region and a P-type transistor region. Next, two first trenches and two second trenches are formed in the substrate. The first trenches define a fin structure. The second trenches segment the first trenches and the fin. Later, a flowable chemical vapor deposition is performed to form a silicon oxide layer filling the first trenches and the second trenches. Then, a patterned mask is formed only within the N-type transistor region. The patterned mask only covers the silicon oxide layer in the second trenches. Subsequently, part of the silicon oxide layer is removed to make the exposed silicon oxide layer lower than the top surface of the fin structure by taking the patterned mask as a mask. Finally, the patterned mask is removed.
    Type: Application
    Filed: January 18, 2019
    Publication date: June 6, 2019
    Inventors: Kai-Lin Lee, Zhi-Cheng Lee, Wei-Jen Chen, Ting-Hsuan Kang, Ren-Yu He, Hung-Wen Huang, Chi-Hsiao Chen, Hao-Hsiang Yang, An-Shih Shih, Chuang-Han Hsieh
  • Patent number: 10229995
    Abstract: A method of fabricating a fin structure with tensile stress includes providing a structure divided into an N-type transistor region and a P-type transistor region. Next, two first trenches and two second trenches are formed in the substrate. The first trenches define a fin structure. The second trenches segment the first trenches and the fin. Later, a flowable chemical vapor deposition is performed to form a silicon oxide layer filling the first trenches and the second trenches. Then, a patterned mask is formed only within the N-type transistor region. The patterned mask only covers the silicon oxide layer in the second trenches. Subsequently, part of the silicon oxide layer is removed to make the exposed silicon oxide layer lower than the top surface of the fin structure by taking the patterned mask as a mask. Finally, the patterned mask is removed.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: March 12, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kai-Lin Lee, Zhi-Cheng Lee, Wei-Jen Chen, Ting-Hsuan Kang, Ren-Yu He, Hung-Wen Huang, Chi-Hsiao Chen, Hao-Hsiang Yang, An-Shih Shih, Chuang-Han Hsieh
  • Publication number: 20190027602
    Abstract: A method of fabricating a fin structure with tensile stress includes providing a structure divided into an N-type transistor region and a P-type transistor region. Next, two first trenches and two second trenches are formed in the substrate. The first trenches define a fin structure. The second trenches segment the first trenches and the fin. Later, a flowable chemical vapor deposition is performed to form a silicon oxide layer filling the first trenches and the second trenches. Then, a patterned mask is formed only within the N-type transistor region. The patterned mask only covers the silicon oxide layer in the second trenches. Subsequently, part of the silicon oxide layer is removed to make the exposed silicon oxide layer lower than the top surface of the fin structure by taking the patterned mask as a mask. Finally, the patterned mask is removed.
    Type: Application
    Filed: August 4, 2017
    Publication date: January 24, 2019
    Inventors: Kai-Lin Lee, Zhi-Cheng Lee, Wei-Jen Chen, Ting-Hsuan Kang, Ren-Yu He, Hung-Wen Huang, Chi-Hsiao Chen, Hao-Hsiang Yang, An-Shih Shih, Chuang-Han Hsieh
  • Publication number: 20180358453
    Abstract: The present invention provides a method of making a tunneling effect transistor (TFET), the method includes: a substrate is provided, having a fin structure disposed thereon, the fin structure includes a first conductive type, a dielectric layer is then formed on the substrate and on the fin structure, a gate trench is formed in the dielectric layer, and a first work function metal layer is formed in the gate trench, the first work function metal layer defines at least a left portion, a right portion and a central portion, an etching process is performed to remove the central portion of the first work function metal layer, and to form a recess between the left portion and the right portion of the first work function metal layer, afterwards, a second work function metal layer is formed and filled in the recess.
    Type: Application
    Filed: July 6, 2017
    Publication date: December 13, 2018
    Inventors: Hung-Wen Huang, Kai-Lin Lee, Ren-Yu He, Chi-Hsiao Chen, Ting-Hsuan Kang, Hao-Hsiang Yang, An-Shih Shih, Chuang-Han Hsieh
  • Patent number: 10103265
    Abstract: A CMOS device is disclosed, including a plurality of active regions having a length along a first direction, wherein the active regions are arranged end-to-end along the first direction and are separated by an isolation structure. A recessed region is formed in the isolation structure between the adjacent terminals of the each pair of neighboring active regions and is completely filled by an interlayer dielectric layer, wherein the interlayer dielectric layer comprises a stress.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: October 16, 2018
    Assignee: UNITED MICROELETRONICS CORP.
    Inventors: Zhi-Cheng Lee, Kai-Lin Lee, Yi-Che Yen
  • Patent number: 10014406
    Abstract: A semiconductor device and a forming method thereof, the semiconductor device includes a first and a second wells, a source region, a drain region, two gate structures and at least one doping region. The first well with a first conductive type is disposed in a substrate, and the source region is disposed in the first well. The second well with a second conductive type is disposed adjacent to the first well in a substrate, and the drain region is disposed in the second well. Two gate structures are disposed on the substrate between the source region and the drain region. At least one doping region with the first conductive type is disposed in the second well between the two gate structures.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: July 3, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Zhi-Cheng Lee, Yu-Hao Huang, Kai-Lin Lee
  • Publication number: 20180166574
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a gate structure on a substrate; forming a first epitaxial layer adjacent to two sides of the gate structure; forming a patterned mask on the epitaxial layer; and using the patterned mask to remove part of the first epitaxial layer for forming a second epitaxial layer.
    Type: Application
    Filed: December 8, 2016
    Publication date: June 14, 2018
    Inventors: Kai-Lin Lee, Zhi-Cheng Lee, Chih-Chun Hu
  • Publication number: 20180012992
    Abstract: A semiconductor device and a forming method thereof, the semiconductor device includes a first and a second wells, a source region, a drain region, two gate structures and at least one doping region. The first well with a first conductive type is disposed in a substrate, and the source region is disposed in the first well. The second well with a second conductive type is disposed adjacent to the first well in a substrate, and the drain region is disposed in the second well. Two gate structures are disposed on the substrate between the source region and the drain region. At least one doping region with the first conductive type is disposed in the second well between the two gate structures.
    Type: Application
    Filed: August 16, 2016
    Publication date: January 11, 2018
    Inventors: Zhi-Cheng Lee, Yu-Hao Huang, Kai-Lin Lee
  • Patent number: 9640661
    Abstract: A method for fabricating semiconductor device is disclosed. First, a substrate is provided, and a fin-shaped structure is formed on the substrate. Next, a gate structure is formed on the fin-shaped structure, and an epitaxial layer is formed adjacent to the gate structure. Preferably, the epitaxial layer includes a V-shaped profile viewing from the top. According to the preferred embodiment of the present invention, the V-shaped profile of the epitaxial layer allows more stress to be applied to the region having concentrated currents or edges of the fin-shaped structures during an on-state, and at the same time prevent exerting too much stress to the region having high currents or central region of the fin-shaped structure during an off-state.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: May 2, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kai-Lin Lee, Zhi-Cheng Lee, Yu-Hao Huang
  • Patent number: 9450094
    Abstract: A semiconductor process includes the following steps. A fin on a substrate is provided. Spacers are formed only on sidewalls of the fin, where a top surface of the fin is higher than or equal to top surfaces of the spacers. An epitaxial structure is formed on the fin. The present invention also provides a fin-shaped field effect transistor including a fin, spacers and an epitaxial structure. The fin is located on a substrate. The spacers are disposed only on sidewalls of the fin, where a top surface of the fin is higher than or equal to top surfaces of the spacers. The epitaxial structure is disposed on the fin.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: September 20, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Chieh Yeh, Kai-Lin Lee