Patents by Inventor Kam Leung

Kam Leung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170018466
    Abstract: Embodiments of the invention include a method for <something> and the resulting structure. A semiconductor device including a substrate, a silicon-germanium fin formed on the substrate, a dummy gate formed on the fin, and a first set of spacers formed on the exposed sidewalls of the dummy gate is provided. Xenon is implanted into the exposed portions of the fin. A second set of spacers are formed on the exposed sidewalls of the first set of spacer. A dopant is implanted into the exposed portions of the fin. The semiconductor device is thermally annealed, such that the dopants diffuse into the adjacent portions of the fin. The dummy gate is replaced with a gate structure.
    Type: Application
    Filed: September 29, 2016
    Publication date: January 19, 2017
    Inventors: Kangguo Cheng, Pouya Hashemi, Kam-Leung Lee, Alexander Reznicek
  • Patent number: 9514997
    Abstract: Embodiments of the invention include a method for forming a FinFET device and the resulting structure. A semiconductor device including a substrate, a silicon-germanium fin formed on the substrate, a dummy gate formed on the fin, and a first set of spacers formed on the exposed sidewalls of the dummy gate is provided. Xenon is implanted into the exposed portions of the fin. A second set of spacers are formed on the exposed sidewalls of the first set of spacer. A dopant is implanted into the exposed portions of the fin. The semiconductor device is thermally annealed, such that the dopants diffuse into the adjacent portions of the fin. The dummy gate is replaced with a gate structure.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: December 6, 2016
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Pouya Hashemi, Kam-Leung Lee, Alexander Reznicek
  • Publication number: 20160284606
    Abstract: Embodiments of the invention include a method for <something> and the resulting structure. A semiconductor device including a substrate, a silicon-germanium fin formed on the substrate, a dummy gate formed on the fin, and a first set of spacers formed on the exposed sidewalls of the dummy gate is provided. Xenon is implanted into the exposed portions of the fin. A second set of spacers are formed on the exposed sidewalls of the first set of spacer. A dopant is implanted into the exposed portions of the fin. The semiconductor device is thermally annealed, such that the dopants diffuse into the adjacent portions of the fin. The dummy gate is replaced with a gate structure.
    Type: Application
    Filed: March 25, 2015
    Publication date: September 29, 2016
    Inventors: Kangguo Cheng, Pouya Hashemi, Kam-Leung Lee, Alexander Reznicek
  • Patent number: 9406569
    Abstract: A semiconductor-on-insulator (SOI) substrate comprises a bulk semiconductor substrate, a buried insulator layer formed on the bulk substrate and an active semiconductor layer formed on the buried insulator layer. Impurities are implanted near the interface of the buried insulator layer and the active semiconductor layer. A diffusion barrier layer is formed between the impurities and an upper surface of the active semiconductor layer. The diffusion barrier layer prevents the impurities from diffusing therethrough.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: August 2, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Gregory G. Freeman, Kam Leung Lee, Chengwen Pei, Geng Wang, Yanli Zhang
  • Patent number: 9240354
    Abstract: A semiconductor-on-insulator (SOI) substrate comprises a bulk semiconductor substrate, a buried insulator layer formed on the bulk substrate and an active semiconductor layer formed on the buried insulator layer. Impurities are implanted near the interface of the buried insulator layer and the active semiconductor layer. A diffusion barrier layer is formed between the impurities and an upper surface of the active semiconductor layer. The diffusion barrier layer prevents the impurities from diffusing therethrough.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: January 19, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Gregory G. Freeman, Kam Leung Lee, Chengwen Pei, Geng Wang, Yanli Zhang
  • Patent number: 9196712
    Abstract: A semiconductor device fabrication process includes forming a fin upon a semiconductor substrate and forming a gate upon the semiconductor substrate and upon and orthogonal to the fin, forming a source drain contacts by growing epitaxy material over the fin, forming a trench between the epitaxy material and a gate to expose an upper surface portion of the fin, doping the exposed fin portion to form an extension region, and activating the extension region. The semiconductor device may include the fin, gate, gate spacers upon sidewalls of the gate, a source drain contact adjacent to the gate spacers surrounding the fin, and doped extension regions within the fin below the gate spacers.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: November 24, 2015
    Assignee: GlobalFoundries Inc.
    Inventors: Mohammad Hasanuzzaman, Jeffrey B. Johnson, Kam-Leung Lee
  • Patent number: 9105559
    Abstract: A conformal doping process for FinFET devices on a semiconductor substrate which includes NFET fins and PFET fins. In a first exemplary embodiment, an N-type dopant composition is conformally deposited over the NFET fins and the PFET fins. The semiconductor substrate is annealed to drive in an N-type dopant from the N-type dopant composition into the NFET fins. A P-type dopant composition is conformally deposited over the NFET fins and the PFET fins. The semiconductor substrate is annealed to drive in a P-type dopant from the P-type dopant composition into the PFET fins. In a second exemplary embodiment, one of the NFET fins and PFET fins may be covered with a first dopant composition and then a second dopant composition may cover both the NFET fins and the PFET fins followed by an anneal to drive in both dopants.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: August 11, 2015
    Assignees: International Business Machines Corporation, Global Foundries, Inc.
    Inventors: Veeraraghavan S. Basker, Nathaniel Berliner, Hyun-Jin Cho, Johnathan Faltermeier, Kam-Leung Lee, Tenko Yamashita
  • Patent number: 9064336
    Abstract: A machine readable storage media containing executable program instructions which when executed cause a digital processing system to set a plurality of operands and operators. A plurality of texture maps are sent to a processor for texture compositing. Operands are selected for a texture operation. A first logic is used wherein if the circulation of blend stages is equal to a number of blend stages, then a color saturation is performed, and a second logic that if the circulation number of blend stages does not equal the number of blend stages then at least one operand is selected for another texture compositing operation.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: June 23, 2015
    Assignee: Intel Corporation
    Inventors: Kam Leung, Val G. Cook, Peter L. Doyle, Wing Hang Wong
  • Publication number: 20150079773
    Abstract: A conformal doping process for FinFET devices on a semiconductor substrate which includes NFET fins and PFET fins. In a first exemplary embodiment, an N-type dopant composition is conformally deposited over the NFET fins and the PFET fins. The semiconductor substrate is annealed to drive in an N-type dopant from the N-type dopant composition into the NFET fins. A P-type dopant composition is conformally deposited over the NFET fins and the PFET fins. The semiconductor substrate is annealed to drive in a P-type dopant from the P-type dopant composition into the PFET fins. In a second exemplary embodiment, one of the NFETfins and PFET fins may be covered with a first dopant composition and then a second dopant composition may cover both the NFET fins and the PFET fins followed by an anneal to drive in both dopants.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 19, 2015
    Applicants: GLOBALFOUNDRIES Inc., International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Nathaniel Berliner, Hyun-Jin Cho, Johnathan Faltermeler, Kam-Leung Lee, Tenko Yamashita
  • Publication number: 20150056760
    Abstract: A semiconductor-on-insulator (SOI) substrate comprises a bulk semiconductor substrate, a buried insulator layer formed on the bulk substrate and an active semiconductor layer formed on the buried insulator layer. Impurities are implanted near the interface of the buried insulator layer and the active semiconductor layer. A diffusion barrier layer is formed between the impurities and an upper surface of the active semiconductor layer. The diffusion barrier layer prevents the impurities from diffusing therethrough.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 26, 2015
    Inventors: Gregory G. Freeman, Kam Leung Lee, Chengwen Pei, Geng Wang, Yanli Zhang
  • Patent number: 8927422
    Abstract: A method for forming a raised silicide contact including depositing a layer of silicon at a bottom of a contract trench using a gas cluster implant technique which accelerates clusters of silicon atoms causing them to penetrate a surface oxide on a top surface of the silicide, a width of the silicide and the contact trench are substantially equal; heating the silicide including the silicon layer to a temperature from about 300° C. to about 950° C. in an inert atmosphere causing silicon from the layer of silicon to react with the remaining silicide partially formed in the silicon containing substrate; and forming a raised silicide from the layer of silicon, wherein the thickness of the raised silicide is greater than the thickness of the silicide and the raised silicide protrudes above a top surface of the silicon containing substrate.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Emre Alptekin, Nathaniel Berliner, Christian Lavoie, Kam-Leung Lee, Ahmet Serkan Ozcan
  • Publication number: 20140131782
    Abstract: A semiconductor-on-insulator (SOI) substrate comprises a bulk semiconductor substrate, a buried insulator layer formed on the bulk substrate and an active semiconductor layer formed on the buried insulator layer. Impurities are implanted near the interface of the buried insulator layer and the active semiconductor layer. A diffusion barrier layer is formed between the impurities and an upper surface of the active semiconductor layer. The diffusion barrier layer prevents the impurities from diffusing therethrough.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 15, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gregory G. Freeman, Kam Leung Lee, Chengwen Pei, Geng Wang, Yanli Zhang
  • Publication number: 20130334693
    Abstract: A method for forming a raised silicide contact, the method including depositing a layer of silicon using a gas cluster implant technique which accelerates clusters of silicon atoms causing them to penetrate a surface oxide on a top surface of the silicide; heating the silicide including the silicon layer to a temperature from about 300° C. to about 950° and holding the temperature for about 0.1 miliseconds to about 600 seconds in an inert atmosphere causing silicon from the layer of silicon to react with the remaining silicide partially formed in the silicon containing substrate; and forming a raised silicide from the layer of silicon, wherein the thickness of the raised silicide is greater than the thickness of the silicide and the raised silicide protrudes above a top surface of the silicon containing substrate.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 19, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Emre Alptekin, Nathaniel Berliner, Christian Lavoie, Kam-Leung Lee, Ahmet Serkan Ozcan
  • Publication number: 20120190216
    Abstract: A semiconductor structure is provided. In some cases, an absorber having a low deposition temperature is applied to at least a portion of the structure. At least a portion of the structure is subjected to a long flash anneal process.
    Type: Application
    Filed: April 29, 2011
    Publication date: July 26, 2012
    Applicant: International Business Machines Corporation
    Inventors: Kevin K. Chan, Eric C. Harley, Isaac Lauer, Kam-Leung Lee, Paul A. Ronsheim
  • Patent number: 8230270
    Abstract: The invention relates to a monitoring device for a processor comprising a means for monitoring the power consumption of the processor and a means for analysing the power consumption to detect abnormal operation of the processor.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: July 24, 2012
    Assignee: University of Leicester
    Inventors: Michael Joseph Pont, Kam Leung Chan
  • Patent number: 8114748
    Abstract: A method of forming a semiconductor device is provided that includes forming a gate structure atop a substrate and implanting dopants into the substrate to a depth of 10 nm or less from an upper surface of the substrate. In a following step, an anneal is performed with a peak temperature ranging from 1200° C. to 1400° C., and a hold time period ranging from 1 millisecond to 5 milliseconds.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: February 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Kam-Leung Lee, Paul A. Ronsheim
  • Publication number: 20110254138
    Abstract: An improved low-temperature absorber, amorphous carbonitride (ACN) with an extinction coefficient (k) of greater than 0.15, and an emissivity of greater than 0.8 is disclosed. The ACN film can also be characterized as having a minimum of hydrocarbon content as observed by FTIR. The ACN film can be used as an effective absorbing layer that absorbs a wide range of electromagnetic radiation from different sources including lasers or flash lamps. A method of forming such an ACN film at a deposition temperature of less than, or equal to, 450° C. is also provided.
    Type: Application
    Filed: April 15, 2010
    Publication date: October 20, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Katherina E. Babich, Pratik P. Joshi, Kam Leung Lee, Deborah A. Neumayer, Spyridon Skordas
  • Publication number: 20100327375
    Abstract: A method of forming a semiconductor device is provided that includes forming a gate structure atop a substrate and implanting dopants into the substrate to a depth of 10 nm or less from an upper surface of the substrate. In a following step, an anneal is performed with a peak temperature ranging from 1200° C. to 1400° C., and a hold time period ranging from 1 millisecond to 5 milliseconds.
    Type: Application
    Filed: June 25, 2009
    Publication date: December 30, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kam-Leung Lee, Paul A. Ronsheim
  • Publication number: 20100281298
    Abstract: The invention relates to a monitoring device for a processor comprising a means for monitoring the power consumption of the processor and a means for analysing the power consumption to detect abnormal operation of the processor.
    Type: Application
    Filed: May 9, 2008
    Publication date: November 4, 2010
    Inventors: Michael Joseph Pont, Kam Leung Chan
  • Patent number: 7705345
    Abstract: A strained Fin Field Effect Transistor (FinFET) (and method for forming the same) includes a relaxed first material having a sidewall, and a strained second material formed on the sidewall of the first material. The relaxed first material and the strained second material form a fin of the FinFET.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: April 27, 2010
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Kevin K. Chan, Dureseti Chidambarrao, Silke H. Christianson, Jack O. Chu, Anthony G. Domenicucci, Kam-Leung Lee, Anda C. Mocuta, John A. Ott, Qiqing C. Ouyang