Patents by Inventor Karol Hatzilias

Karol Hatzilias has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150066411
    Abstract: Identifying a damaged tool, including capturing, by an optical scanner, images of a manufactured part machined by the damaged tool; determining, from the captured images by a data processor operatively coupled to the scanner, measurements of the part; and determining, by the data processor based upon the measurements, that the tool is damaged.
    Type: Application
    Filed: December 6, 2013
    Publication date: March 5, 2015
    Applicant: UNITED SCIENCES, LLC
    Inventors: KEITH A. BLANTON, KAROL HATZILIAS, STEFAN T. POSEY, WESS ERIC SHARPE
  • Publication number: 20150063674
    Abstract: Profiling a manufactured part during its service life, including capturing by an optical scanner images of the part, the part characterized by an expected service life and by attributes with specifications of design values, including capturing the images at more than one time during an actual service life of the part; measuring by a data processor operatively coupled to the scanner, based upon the captured images, actual values of one or more of the attributes when the images are captured; storing, in a database by the data processor operatively coupled to the scanner, the measurements of the actual values of the attributes; and making a determination, from the stored actual values by a data processor operatively coupled to the database, whether the part continues to comply with its specification during the actual service life of the part.
    Type: Application
    Filed: December 6, 2013
    Publication date: March 5, 2015
    Applicant: UNITED SCIENCES, LLC
    Inventors: KEITH A. BLANTON, KAROL HATZILIAS, STEFAN T. POSEY, WESS ERIC SHARPE
  • Publication number: 20150062585
    Abstract: Apparatus and methods for optical scanning, including an optical probe capable of motion for optical scanning with respect to both the interior and the exterior of a scanned object, the optical probe also including light conducting apparatus disposed so as to conduct scan illumination from a source of scan illumination through the probe; light reflecting apparatus disposed so as to project scan illumination radially away from a longitudinal axis of the probe with at least some of the scan illumination projected onto the scanned object; optical line forming apparatus disposed so as to project scan illumination as a line of scan illumination with at least some of the scan illumination projected onto the scanned object; and a lens disposed so as to conduct, through the probe to an optical sensor, scan illumination reflected from the scanned object.
    Type: Application
    Filed: December 2, 2013
    Publication date: March 5, 2015
    Applicant: UNITED SCIENCES, LLC
    Inventors: Keith A. Blanton, KAROL HATZILIAS, STEFAN T. POSEY, WESS ERIC SHARPE
  • Publication number: 20150057533
    Abstract: A device for scanning a body orifice or surface including a light source and a wide angle lens. The light from the light source is projected in a pattern distal or adjacent to the wide angle lens. Preferably, the pattern is within a focal surface of the wide angle lens. The pattern intersects a surface of the body orifice, such as an ear canal, and defines a partial lateral portion of the pattern extending along the surface. A processor is configured to receive an image of the lateral portion from the wide angle lens and determine a position of the lateral portion in a coordinate system using a known focal surface of the wide angle lens. Multiple lateral portions are reconstructed by the processor to build a three-dimensional shape. This three-dimensional shape may be used for purposes such as diagnostic, navigation, or custom-fitting of medical devices, such as hearing aids.
    Type: Application
    Filed: November 12, 2014
    Publication date: February 26, 2015
    Inventors: HARRIS BERGMAN, SCOTT CAHALL, GIORGOS HATZILIAS, KAROL HATZILIAS, DAVID G. STITES
  • Patent number: 8900125
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the ear probe comprising a wide-angle lens optically coupled to the image sensor, laser light source, a laser optical element, and a source of non-laser video illumination; the plurality of tracking illumination sensors disposed upon the otoscanner body so as to sense reflections of tracking illumination emitted from the tracking illumination emitter and reflected from tracking targets installed at positions that are fixed relative to the scanned ear; the image sensor coupled for data communications to a data processor, with the data processor configured so that it functions by constructing a 3D image of the interior of the scanned ear.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: December 2, 2014
    Assignee: United Sciences, LLC
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Patent number: 8900127
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the ear probe comprising a wide-angle lens optically coupled to the image sensor, laser light source, a laser optical element, and a source of non-laser video illumination; the plurality of tracking illumination sensors disposed upon the otoscanner body so as to sense reflections of tracking illumination emitted from the tracking illumination emitter and reflected from tracking targets installed at positions that are fixed relative to the scanned ear; the image sensor coupled for data communications to a data processor, with the data processor configured so that it functions by constructing a 3D image of the interior of the scanned ear.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: December 2, 2014
    Assignee: United Sciences, LLC
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Patent number: 8900129
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the ear probe comprising a wide-angle lens optically coupled to the image sensor, laser light source, a laser optical element, and a source of non-laser video illumination; the display screen coupled for data communications to the image sensor, the display screen displaying images of the scanned ear, the display screen positioned on the otoscanner body in relation to the ear probe so that when the ear probe is positioned for scanning, both the display screen and the ear probe are visible to a operator operating the otoscanner; and a data processor configured to construct a 3D image of the interior of the scanned ear.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: December 2, 2014
    Assignee: United Sciences, LLC
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Patent number: 8900130
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the image sensor coupled for data communications to a data processor, with the data processor configured to function by inferring, from a tracked position of the ear probe, previously recorded statistics describing typical ear sizes according to human demographics, and currently recorded demographic information regarding a person whose ear is scanned, the actual present position of the ear probe in relation to at least one part of the scanned ear; and providing a warning when the probe moves within a predefined distance from the part of the scanned ear.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: December 2, 2014
    Assignee: United Sciences, LLC
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Patent number: 8900128
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; wherein the image sensor operates at a video frame rate that is twice a standard video frame rate; a laser light source is strobed during capture by the image sensor of alternate video frames; video frames are captured by the image sensor when only the non-laser video illumination illuminates the scanned ear; and images for constructing 3D images are captured by the image sensor only when the strobed laser light illuminates the scanned ear.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: December 2, 2014
    Assignee: United Sciences, LLC
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Patent number: 8900126
    Abstract: A device for scanning a body orifice or surface including a light source and a wide angle lens. The light from the light source is projected in a pattern distal or adjacent to the wide angle lens. Preferably, the pattern is within a focal surface of the wide angle lens. The pattern intersects a surface of the body orifice, such as an ear canal, and defines a partial lateral portion of the pattern extending along the surface. A processor is configured to receive an image of the lateral portion from the wide angle lens and determine a position of the lateral portion in a coordinate system using a known focal surface of the wide angle lens. Multiple lateral portions are reconstructed by the processor to build a three-dimensional shape. This three-dimensional shape may be used for purposes such as diagnostic, navigation, or custom-fitting of medical devices, such as hearing aids.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: December 2, 2014
    Assignee: United Sciences, LLC
    Inventors: Harris Bergman, Scott Cahall, Giorgos Hatzilias, Karol Hatzilias, David G. Stites
  • Publication number: 20140313506
    Abstract: An apparatus is provided that includes an optical probe; and a robotic transport so adapted to the optical probe as to move the optical probe inside a drilled hole to measure the drilled hole at one or more depths.
    Type: Application
    Filed: July 2, 2014
    Publication date: October 23, 2014
    Inventors: HARRIS BERGMAN, HENRIK ISKOV CHRISTENSEN, KAROL HATZILIAS
  • Publication number: 20140286540
    Abstract: Methods, systems, and apparatus for estimating physical parameters using three dimensional representations. In one aspect, predetermined light patterns are projected onto an object and light patterns resulting from an interaction of the projected light patterns and portions of the object are detected. Three dimensional locations of multiple light elements in the detected light pattern are determined, and physical parameters of the object, for example, weight, are estimated based on the locations.
    Type: Application
    Filed: February 24, 2014
    Publication date: September 25, 2014
    Applicant: Body Surface Translations, Inc.
    Inventors: Karol Hatzilias, Giorgos Hatzilias, James Alan Burns Emsley, Harris Bergman, Chris Van Buren, John Durbin, Nate Berglund
  • Patent number: 8841603
    Abstract: Optical scanning with an optical probe composed of an elongated cylinder of transparent material mounted upon an optical scanner body; one or more sources of scan illumination mounted in the probe distally or proximally with respect to the scanner body and projecting scan illumination longitudinally through the probe; a radially-reflecting optical element mounted in the probe having a conical mirror on a surface of the radially-reflecting optical element, the mirror oriented so as to project scan illumination radially away from a longitudinal axis of the probe with at least some of the scan illumination projected onto a scanned object; a lens mounted in the probe between the radially-reflecting optical element and the scanner body and disposed so as to conduct to an optical sensor scan illumination reflected from the scanned object.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: September 23, 2014
    Assignee: United Sciences, LLC
    Inventors: Keith A. Blanton, Karol Hatzilias, Stefan T. Posey, Wess Eric Sharpe
  • Patent number: 8842273
    Abstract: An apparatus is provided that includes an optical probe; and a robotic transport so adapted to the optical probe as to move the optical probe inside a drilled hole to measure the drilled hole at one or more depths.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: September 23, 2014
    Assignee: United Sciences, LLC
    Inventors: Harris Bergman, Henrik Iskov Christensen, Karol Hatzilias
  • Publication number: 20140253913
    Abstract: A system for measuring a drilled hole in a structure, the drilled hole having a drilled hole wall, includes a probe having a probe body movable along a probe path extending into the drilled hole, the probe body supporting an optical illumination path and an optical section signal path. Illumination follows the illumination path and is emitted radially outwardly from the probe body so as to illuminate the drilled hole wall when the probe body is disposed at a location along the probe path and the illumination is transmitted along the illumination path. Illumination reflecting from the drilled hole wall back toward an optical sensor represents an optical section signal associated with the location of the probe along the probe path.
    Type: Application
    Filed: May 21, 2014
    Publication date: September 11, 2014
    Applicant: UNITED SCIENCES, LLC
    Inventors: HARRIS BERGMAN, HENRIK ISKOV CHRISTENSEN, KAROL HATZILIAS
  • Publication number: 20140226156
    Abstract: An apparatus is provided that includes an optical probe; and a robotic transport so adapted to the optical probe as to move the optical probe inside a drilled hole to measure the drilled hole at one or more depths.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 14, 2014
    Applicant: United Sciences LLC
    Inventors: HARRIS BERGMAN, HENRIK ISKOV CHRISTENSEN, KAROL HATZILIAS
  • Publication number: 20140200408
    Abstract: An otoscanner including a conical laser-reflective optical element and a laser light source and the conical laser-reflecting optical element are configured so that the conical laser-reflecting optical element, when illuminated by the laser light source, projects a broken ring of laser light upon an interior surface of the ear when the ear probe is positioned in the ear and a diffractive laser optic lens and the laser light source and the diffractive laser optic lens are configured so that the diffractive laser optic lens, when illuminated by the laser light source, projects upon an interior surface of the ear a fan of laser light at a predetermined angle with respect to a front surface of the diffractive laser optic lens when the ear probe is positioned in the ear.
    Type: Application
    Filed: March 18, 2014
    Publication date: July 17, 2014
    Applicant: UNITED SCIENCES, LLC
    Inventors: NATHANAEL BERGLUND, HARRIS BERGMAN, SCOTT CAHALL, JERRY FOSTER, EOHAN GEORGE, SAMUEL W. HARRIS, GIORGOS HATZILIAS, KAROL HATZILIAS, RUIZHI HONG, WESS ERIC SHARPE, DAVID G. STITES, HARRY S. STROTHERS, IV
  • Patent number: 8715173
    Abstract: An otoscanner including a conical laser-reflective optical element and a laser light source and the conical laser-reflecting optical element are configured so that the conical laser-reflecting optical element, when illuminated by the laser light source, projects a broken ring of laser light upon an interior surface of the ear when the ear probe is positioned in the ear and a diffractive laser optic lens and the laser light source and the diffractive laser optic lens are configured so that the diffractive laser optic lens, when illuminated by the laser light source, projects upon an interior surface of the ear a fan of laser light at a predetermined angle with respect to a front surface of the diffractive laser optic lens when the ear probe is positioned in the ear.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: May 6, 2014
    Assignee: United Sciences, LLC
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Patent number: 8659764
    Abstract: Methods, systems, and apparatus for estimating physical parameters using three dimensional representations. In one aspect, predetermined light patterns are projected onto an object and light patterns resulting from an interaction of the projected light patterns and portions of the object are detected. Three dimensional locations of multiple light elements in the detected light pattern are determined, and physical parameters of the object, for example, weight, are estimated based on the locations.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: February 25, 2014
    Assignee: Body Surface Translations, Inc.
    Inventors: Karol Hatzilias, Giorgos Hatzilias, James Alan Burns Emsley, Harris Bergman, Chris Van Buren, John Durbin, Nate Berglund
  • Publication number: 20140031680
    Abstract: Apparatus and methods for tracking scanner motion with a tracking illumination emitter mounted on a scanner, the scanner including imaging apparatus that captures a sequence of images of a scanned object as the scanner moves with respect to the scanned object; tracking targets installed off the scanner at positions that are fixed relative to a scanned object; one or more tracking illumination sensors mounted on the scanner, the tracking illumination sensors sensing reflections of tracking illumination emitted from the tracking illumination emitter and reflected from the tracking targets as the scanner moves in the process of scanning the scanned object; and one or more data processors, at least one of the data processors coupled for data communications to the tracking illumination sensors, the data processor determining, as the scanner moves, tracked positions of the scanner based upon values of the reflections.
    Type: Application
    Filed: September 30, 2013
    Publication date: January 30, 2014
    Applicant: UNITED SCIENCES, LLC
    Inventors: NATHANAEL BERGLUND, HARRIS BERGMAN, SCOTT CAHALL, JERRY FOSTER, EOHAN GEORGE, SAMUEL W. HARRIS, GIORGOS HATZILIAS, KAROL HATZILIAS, RUIZHI HONG, WESS E. SHARPE, DAVID G. STITES, HARRY S. STROTHERS, IV