Patents by Inventor Karthik Subburaj
Karthik Subburaj has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250208255Abstract: Various examples disclosed herein relate to digital signal processing, and particularly, to processing range data using Fast-Fourier Transform (FFT) operations. In an example, a system includes transceiver circuitry and processing circuitry coupled to the transceiver circuitry. The transceiver circuitry is configured to receive signals reflected off an object and generate radar data based on the signals. The processing circuitry is configured to perform a first FFT operation on the radar data to produce a first set of range data, perform a frequency shift on the radar data, perform a second FFT operation on the frequency shifted radar data to produce a second set of range data, and produce a third set of range data by collating the first set of range data and a portion of the second set of range data or collating a portion of the first set of range data and the second set of range data.Type: ApplicationFiled: March 26, 2024Publication date: June 26, 2025Inventors: Sandeep Rao, Karthik Subburaj
-
Publication number: 20250199154Abstract: Systems and methods for compressing data are provided. An example method includes generating range data based on digital data of received signals resulting from transmitted radar chirps being reflected, in which the range data is distributed among range bins; partitioning the range bins into multiple sections, each of which includes a respective set of range bins, in which a first section includes range data spanning a closest range and a last section includes range data spanning a farthest range; merging range data in a section with range data in two adjacent sections that are between the first and last sections; storing merged range data in the two other sections in respective regions of a memory; processing the merged range data to generate range-velocity data and/or range-angle data; and analyzing such data to determine whether a target is present in the section.Type: ApplicationFiled: February 26, 2025Publication date: June 19, 2025Inventors: Karthik Subburaj, Sandeep Rao
-
Publication number: 20250190170Abstract: An example device includes a multiplexer configured to receive a first digital output value indicating whether a first inequality condition with respect to first and second input values is true or false, and a second digital output value indicating whether a second inequality condition with respect to the first and second input values is true or false. Such device further includes calculation circuitry coupled to the multiplexer and configured to receive the first and second input values and calculate an output value representative of a linear combination of the first and second input values as specified by a select signal that is based on the first and second digital output values.Type: ApplicationFiled: February 20, 2025Publication date: June 12, 2025Inventors: Shailesh JOSHI, Karthik SUBBURAJ, Karthik RAMASUBRAMANIAN
-
Publication number: 20250180697Abstract: Radar systems, devices, methods, and non-transitory mediums storing instructions for causing execution of radar signal processing operations are provided. Multiple chirps are transmitted, in which each chirp includes a first chirp segment having a first bandwidth spanning a first frequency range and a second chirp segment having a second bandwidth spanning a second, different, frequency range. For each chirp, the second chirp segment is transmitted a specific time after the first chirp segment. The chirps are sampled to generate first and second sets of sampled data corresponding to the first chirp segments and second chirp segments, respectively.Type: ApplicationFiled: February 4, 2025Publication date: June 5, 2025Inventors: Karthik Subburaj, Sandeep Rao
-
Publication number: 20250138148Abstract: In described examples, a frequency modulated continuous wave (FMCW) radar includes a reference clock, a phase locked loop (PLL), a pulse generator, a counter, a chirp ramp control circuit, and a synchronization state machine. The reference clock generates a reference clock signal. The PLL generates a feedback clock signal in response to the reference clock signal, and an output signal in response to the feedback clock signal. The pulse generator outputs a chirp start pulse in response to the reference clock signal. The counter increments a count in response to the feedback clock signal. The synchronization state machine provides a chirp ramp signal to a chirp ramp control circuit in response to the reference clock signal, the feedback clock signal, the chirp start pulse, and the count. The chirp ramp control circuit causes the PLL to ramp a frequency of the output signal in response to the chirp ramp signal.Type: ApplicationFiled: October 31, 2023Publication date: May 1, 2025Inventors: Karthik Subburaj, Piyush Soni, Vashishth Dudhia, Ryan Smith, Kavithaa Rajagopalan, Karthik Ramasubramanian, Shankar Ram Narayana Moorthy, Indu Prathapan, Samala Sreekiran
-
Publication number: 20250123386Abstract: An example radar system includes transmit, receive and processing circuitry. In operation, the radar system transmits first and second sets of chirp signals in which each chirp signal of the first set of chirp signals has an induced phase shift, receives reflected signals based on the transmitted first and second sets of chirp signals, and generates respective first and second sets of digital signals. Fourier Transform (FT) operations are performed on the first and second sets of digital signals to generate first and second arrays, respectively. The radar system identifies a first peak in the first array and a second peak in the second array representing an object in a field of view. The first and second peaks are at corresponding positions in the first and second arrays, respectively. The radar system then compares the phases of the first and second peaks to determine an actual phase shift for the induced phase shift.Type: ApplicationFiled: December 27, 2024Publication date: April 17, 2025Inventors: Sandeep Rao, Karthik Subburaj
-
Publication number: 20250111007Abstract: In described examples, an integrated circuit (IC) includes a fast Fourier transform (FFT) engine, a first memory, a second memory, a conjugate symmetric combiner (CSC), and a control circuit coupled to control them. The first and second memories are coupled to the FFT engine, and the CSC is coupled to the first and second memories and the FFT engine. The FFT engine receives and processes a first stream of samples to generate a second stream of samples. In a first phase, the FFT engine provides a first portion of the second stream of samples to the first memory. In a second phase, the FFT engine provides a second portion of the second stream of samples to the second memory, the first memory provides the first portion of the second stream of samples to the CSC, and the CSC responsively generates a third stream of samples.Type: ApplicationFiled: September 30, 2024Publication date: April 3, 2025Inventors: Kanish B, Karthik Subburaj, Karthik Ramasubramanian, Anushree Pendharkar, Kameswaran Vengattaramane, Atman Kar
-
Patent number: 12265149Abstract: A method for compressing echolocation data is provided. The method includes dividing the echolocation data into a plurality of partitions, and selecting a first partition for processing. The method also includes combining echolocation data from the first partition with echolocation data within a second partition, and combining echolocation data from the first partition with echolocation data within a third partition. The method further includes storing the combined echolocation data for all of the plurality of partitions except for the first partition in a memory.Type: GrantFiled: August 18, 2021Date of Patent: April 1, 2025Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Karthik Subburaj, Sandeep Rao
-
Patent number: 12260187Abstract: A device includes a comparison circuit and a calculation circuit coupled to the comparison circuit. The comparison circuit is configured to receive a first digital input value (X) and a second digital input value (Y), and provide a first digital output value that indicates one of a first relationship, a second relationship, and a third relationship between X and Y. The calculation circuit is configured to receive X and Y, receive the first digital output value, and provide a second digital output value. The second digital output value is a first linear combination of X and Y responsive to the first digital output value indicating the first relationship, a second linear combination of X and Y responsive to the first digital output value indicating the second relationship, and a third linear combination of X and Y responsive to the first digital output value indicating the third relationship.Type: GrantFiled: June 24, 2021Date of Patent: March 25, 2025Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Shailesh Joshi, Karthik Subburaj, Karthik Ramasubramanian
-
Patent number: 12248091Abstract: An apparatus comprises processor cores and computer-readable mediums storing machine instructions for the processor cores. When executing the machine instructions, the processor cores obtain received signals for transmitted chirps from a radar sensor circuit. Each transmitted chirp comprises an A chirp segment, a time gap, and a B chirp segment, respectively. The processor cores sample the received signals to obtain sampled data matrices M1(A) for the A chirp segments and M1(B) for the B chirp segments. The processor cores perform a first Fourier transform (FT) on each column of M1(A) and M1(B) to obtain velocity matrices M2(A) and M2(B), respectively. The processor cores apply a phase compensation factor to M2(B) to obtain a phase corrected velocity matrix M2(B?), and concatenate M2(A) and M2(B?) to obtain an aggregate velocity matrix M2(A&B?). The processor cores perform a second FT on each row of M2(A&B?) to obtain a range and velocity matrix M3(A&B?).Type: GrantFiled: September 27, 2021Date of Patent: March 11, 2025Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Karthik Subburaj, Sandeep Rao
-
Patent number: 12235347Abstract: A radar transceiver includes a phase shifter that is controlled to apply an induced phase shift in a first subset of chirp signals of a frame of chirp signals, which also includes a second subset of chirp signals in which no phase shift is applied. Other circuitry generates digital signals based on received reflected signals, which are based on transmitted signals. Processing circuitry performs a Fast Fourier Transform (FFT) on a first subset of digital signals, corresponding to the first subset of chirp signals, to generate a first range-Doppler array, and performs a FFT on the second subset of digital signals, corresponding to the second subset of chirp signals, to generate a second range-Doppler array; identifies peaks in the first and second range-Doppler arrays to detect an object; and compares a phases of peaks at corresponding positions in the first and second range-Doppler arrays to determine a measured phase shift between the two peaks.Type: GrantFiled: November 6, 2023Date of Patent: February 25, 2025Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Sandeep Rao, Karthik Subburaj
-
Patent number: 12228680Abstract: Methods, apparatus, systems and articles of manufacture to compensate radar system calibration are disclosed. A radio-frequency (RF) subsystem having a transmit channel, a receive channel, and a loopback path comprising at least a portion of the transmit channel and at least a portion of the receive channel, a loopback measurer to measure a first loopback response of the RF subsystem for a first calibration configuration of the RF subsystem, and to measure a second loopback response of the RF subsystem for a second calibration configuration of the RF subsystem, and a compensator to adjust at least one of a transmit programmable shifter or a digital front end based on a difference between the first loopback response and the second loopback response to compensate for a loopback response change when the RF subsystem is changed from the first calibration configuration to the second calibration configuration.Type: GrantFiled: July 12, 2022Date of Patent: February 18, 2025Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Karthik Subburaj, Shankar Narayanamoorthy, Karthik Ramasubramanian, Anand Gadiyar, Dheeraj Kumar Shetty, Shailesh Joshi
-
Publication number: 20250035744Abstract: In some examples, a method includes receiving, at a first device, a radar signal transmitted by a second device at a transmission frequency offset from a local oscillator (LO) frequency of the first device by a target offset and reflected off a target. The method also includes determining an intermediate frequency (IF) of the radar signal based on the transmission frequency and the LO frequency. The method also includes determining a parts per million (ppm) offset between the first device and the second device based on the intermediate frequency and the target offset.Type: ApplicationFiled: September 28, 2023Publication date: January 30, 2025Inventors: Karthik SUBBURAJ, Sandeep RAO, Karthik RAMASUBRAMANIAN
-
Patent number: 12196847Abstract: The disclosure provides a radar apparatus for estimating a range of an obstacle. The radar apparatus includes a local oscillator that generates a first ramp segment and a second ramp segment. The first ramp segment and the second ramp segment each includes a start frequency, a first frequency and a second frequency. The first frequency of the second ramp segment is equal to or greater than the second frequency of the first ramp segment when a slope of the first ramp segment and a slope of the second ramp segment are equal and positive. The first frequency of the second ramp segment is equal to or less than the second frequency of the first ramp segment when the slope of the first ramp segment and the slope of the second ramp segment are equal and negative.Type: GrantFiled: September 5, 2018Date of Patent: January 14, 2025Assignee: Texas Instruments IncorporatedInventors: Sandeep Rao, Karthik Subburaj, Brian Ginsburg, Karthik Ramasubramanian, Jawaharlal Tangudu, Sachin Bharadwaj
-
Publication number: 20240353528Abstract: Signal processing comprising, first, determining a plurality of fast Fourier transform (FFT) values corresponding to each sample in a plurality of signal samples, second, variably compressing ones of the FFT values at different non-zero levels of compression, and third, storing the variably compressed ones of the FFT values.Type: ApplicationFiled: June 26, 2023Publication date: October 24, 2024Inventors: Karthik Subburaj, Anil Mani
-
Publication number: 20240345805Abstract: A system includes Radix-22 butterfly stages, each including first and second Radix-22 butterfly circuits, in which the first Radix-22 butterfly circuit of a first Radix-22 butterfly stage includes a data input coupled to a system data input, and one of the first Radix-22 butterfly circuit and the second Radix-22 butterfly circuit of a last Radix-22 butterfly stage includes a data output coupled to a system data output. The system further includes a Radix-3 butterfly circuit including a data input coupled to the system data input and a data output selectively couplable to a data input of one of the first or second Radix-22 butterfly circuits of a second or later Radix-22 butterfly stage based on a particular point transform to be performed by the system. A set of memories are used by either the first Radix-22 butterfly stage or the Radix-3 butterfly circuit, depending on the particular point transform.Type: ApplicationFiled: June 25, 2024Publication date: October 17, 2024Inventors: Pankaj GUPTA, Karthik SUBBURAJ, Sujaata RAMALINGAM, Karthik RAMASUBRAMANIAN, Indu PRATHAPAN
-
Publication number: 20240305321Abstract: In a radar system, an intermediate frequency amplifier (IFA) is configured with two high-pass filter stages, each having an amplifier and a configurable impedance component. A control signal is activated as the radar system begins to transmit a chirp signal to lower the impedance of the configurable impedance components during an initial portion of the chirp transmission to achieve faster settling of the IFA output signal. After the initial portion, the control signal deactivates while transmission of the chirp continues to increase the impedance of the configurable impedance components to a level sufficient to effectively perform filtering of unwanted signals received by the radar system.Type: ApplicationFiled: May 20, 2024Publication date: September 12, 2024Inventors: Karthik SUBBURAJ, Pranav SINHA, Mayank Kumar SINGH, Rittu SACHDEV, Karan Singh BHATIA, Shailesh JOSHI, Indu PRATHAPAN
-
Patent number: 12078749Abstract: An example radar device includes an antenna system, a transmitter having an input, and an output coupled to an input of the antenna system, the transmitter having modulation circuitry to provide frequency modulated continuous wave (FMCW) signals for transmission by the antenna system; a receive signal processing chain; and a digital front-end. The receive signal processing chain includes an input coupled to an output of the antenna system, and is configured to receive radar reflection signals, process the radar reflected signals to generate an intermediate frequency (IF) baseband signal, and digitize the IF baseband signal to generate digital samples of the IF baseband signal. The digital front-end has an input to receive the digital samples of the IF baseband signal and to phase-shift the digital samples in response to a calibration signal.Type: GrantFiled: March 10, 2023Date of Patent: September 3, 2024Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Karthik Subburaj, Vashishth Dudhia, Shailesh Joshi
-
Publication number: 20240288563Abstract: Systems and instruction carrying non-transitory processor-readable mediums are provided to facilitate access of radar data that may be scattered or non-uniformly located within a region of memory for further processing of such radar data. An example system includes counters that increment on different dimensions of the memory region, a lookup table, multipliers, an adder, and a wraparound mechanism to access different sets of non-contiguously stored radar data from a region of memory. The wraparound mechanism performs a wraparound operation when a combined address, generated by the adder based on addresses obtained by the multipliers, is greater than a last valid address in the region. The wraparound operation generates a new combined address that is used to fetch data from the memory. A transform operation is then performed on the fetched data.Type: ApplicationFiled: May 3, 2024Publication date: August 29, 2024Inventors: Karthik SUBBURAJ, Karthik RAMASUBRAMANIAN, Shailesh JOSHI, Kameswaran VENGATTARAMANE, Indu PRATHAPAN
-
Patent number: 12066566Abstract: A frequency modulated continuous wave (FMCW) radar system is provided that includes a receiver configured to generate a digital intermediate frequency (IF) signal, and an interference monitoring component coupled to the receiver to receive the digital IF signal, in which the interference monitoring component is configured to monitor at least one sub-band in the digital IF signal for interference, in which the at least one sub-band does not include a radar signal.Type: GrantFiled: August 31, 2021Date of Patent: August 20, 2024Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Brian Paul Ginsburg, Karthik Subburaj, Karthik Ramasubramanian, Sachin Bhardwaj, Sriram Murali, Sandeep Rao