Patents by Inventor Katherine L. Saenger

Katherine L. Saenger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7534696
    Abstract: A multilevel air-gap-containing interconnect structure and a method of fabricating the same are provided. The multilevel air-gap-containing interconnect structure includes a collection of interspersed line levels and via levels, with via levels comprising conductive vias embedded in one or more dielectric layers in which the dielectric layers are solid underneath and above line features in adjacent levels, and perforated between line features. The line levels contain conductive lines and an air-gap-containing dielectric. A solid dielectric bridge layer, containing conductive contacts and formed by filling in a perforated dielectric layer, is disposed over the collection of interspersed line and via levels.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: May 19, 2009
    Assignee: International Business Machines Corporation
    Inventors: Christopher V. Jahnes, Satyanarayana V. Nitta, Kevin S. Petrarca, Katherine L. Saenger
  • Publication number: 20090108301
    Abstract: The present invention provides an improved amorphization/templated recrystallization (ATR) method for forming hybrid orientation substrates and semiconductor device structures. A direct-silicon-bonded (DSB) silicon layer having a (011) surface crystal orientation is bonded to a base silicon substrate having a (001) surface crystal orientation to form a DSB wafer in which the in-plane <110> direction of the (011) DSB layer is aligned with an in-plane <110> direction of the (001) base substrate. Selected regions of the DSB layer are amorphized down to the base substrate to form amorphized regions aligned with the mutually orthogonal in-plane <100> directions of the (001) base substrate, followed by recrystallization using the base substrate as a template.
    Type: Application
    Filed: October 30, 2007
    Publication date: April 30, 2009
    Applicant: International Business Machines Corporation
    Inventors: Haizhou Yin, John A. Ott, Katherine L. Saenger, Chun-Yung Sung
  • Patent number: 7525162
    Abstract: A PFET is provided on a silicon layer having a (110) surface orientation and located in a substrate. A compressive stress liner disposed on the gate and source/drain regions of the PFET generates a primary longitudinal compressive strain along the direction of the PFET channel. A tensile stress liner disposed on at least one NFET located transversely adjacent to the PFET generates a primary longitudinal tensile strain along the direction of the NFET channel. A secondary stress field from the at least one NFET tensile liner generates a beneficial transverse tensile stress in the PFET channel. The net benefits of the primary compressive longitudinal strain and the secondary tensile transverse stress are maximized when the azimuthal angle between the direction of the PFET channel and an in-plane [1 1 0] crystallographic direction in the (110) silicon layer is from about 25° to about 55.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: April 28, 2009
    Assignee: International Business Machines Corporation
    Inventors: Haizhou Yin, Katherine L. Saenger, Chun-Yung Sung, Kai Xiu
  • Publication number: 20090065867
    Abstract: A PFET is provided on a silicon layer having a (110) surface orientation and located in a substrate. A compressive stress liner disposed on the gate and source/drain regions of the PFET generates a primary longitudinal compressive strain along the direction of the PFET channel. A tensile stress liner disposed on at least one NFET located transversely adjacent to the PFET generates a primary longitudinal tensile strain along the direction of the NFET channel. A secondary stress field from the at least one NFET tensile liner generates a beneficial transverse tensile stress in the PFET channel. The net benefits of the primary compressive longitudinal strain and the secondary tensile transverse stress are maximized when the azimuthal angle between the direction of the PFET channel and an in-plane [1 10] crystallographic direction in the (110) silicon layer is from about 25° to about 55.
    Type: Application
    Filed: September 6, 2007
    Publication date: March 12, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Haizhou Yin, Katherine L. Saenger, Chun-Yung Sung, Kai Xiu
  • Patent number: 7494886
    Abstract: A method for achieving uniaxial strain on originally biaxial-strained thin films after uniaxial strain relaxation induced by ion implantation is provided. The biaxial-strained thin film receives ion implantation after being covered by a patterned implant block structure. The strain in the uncovered region is relaxed by ion implantation, which induces the lateral strain relaxation in the covered region. When the implant block structure is narrow (dimension is comparable to the film thickness), the original biaxial strain will relax uniaxially in the lateral direction.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: February 24, 2009
    Assignee: International Business Machines Corporation
    Inventors: Zhibin Ren, Katherine L. Saenger, Haizhou Yin
  • Patent number: 7465992
    Abstract: Hybrid orientation substrates allow the fabrication of complementary metal oxide semiconductor (CMOS) circuits in which the n-type field effect transistors (nFETs) are disposed in a semiconductor orientation which is optimal for electron mobility and the p-type field effect transistors (pFETs) are disposed in a semiconductor orientation which is optimal for hole mobility. This invention discloses that the performance advantages of FETs formed entirely in the optimal semiconductor orientation may be achieved by only requiring that the device's channel be disposed in a semiconductor with the optimal orientation. A variety of new FET structures are described, all with the characteristic that at least some part of the FET's channel has a different orientation than at least some part of the FET's source and/or drain. Hybrid substrates into which these new FETs might be incorporated are described along with their methods of making.
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: December 16, 2008
    Assignee: International Business Machines Corporation
    Inventors: Joel P. Desouza, Devendra K. Sadana, Katherine L. Saenger, Chun-yung Sung, Min Yang, Haizhou Yin
  • Publication number: 20080303068
    Abstract: A stress liner for use within a semiconductor structure that includes a field effect device has a dielectric constant less than about 7 and a compressive stress greater than about 5 GPa. The stress liner may be formed of a carbon based material, preferably a tetrahedral amorphous carbon (ta-C) material including at least about 60 atomic percent carbon and no greater than C about 40 atomic percent hydrogen. The carbon based material may be either a dielectric material, or given appropriate additional dielectric isolation structures, a semiconductor material. In particular, a ta-C stress liner may be formed using a filtered cathodic vacuum arc (FCVA) physical vapor deposition (PVD) method.
    Type: Application
    Filed: June 8, 2007
    Publication date: December 11, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alfred Grill, Son Nguyen, Katherine L. Saenger
  • Publication number: 20080286917
    Abstract: The present invention provides an improved amorphization/templated recrystallization (ATR) method for fabricating low-defect-density hybrid orientation substrates. ATR methods for hybrid orientation substrate fabrication generally start with a Si layer having a first orientation bonded to a second Si layer or substrate having a second orientation. Selected regions of the first Si layer are amorphized and then recrystallized into the orientation of the second Si layer by using the second Si layer as a template. In particular, this invention provides a melt-recrystallization ATR method, for use alone or in combination with non-melt-recrystallization ATR methods, in which selected Si regions bounded by dielectric-filled trenches are induced to undergo an orientation change by the steps of preamorphization, laser-induced melting, and corner-defect-free templated recrystallization from the melt.
    Type: Application
    Filed: April 4, 2008
    Publication date: November 20, 2008
    Applicant: International Business Machines Corporation
    Inventors: Keith E. Fogel, Kam-Leung Lee, Katherine L. Saenger, Chun-Yung Sung, Haizhou Yin
  • Patent number: 7449767
    Abstract: The present disclosure relates, generally, to a semiconductor substrate with a planarized surface comprising mixed single-crystal orientation regions and/or mixed single-crystal semiconductor material regions, where each region is electrically isolated. In accordance with one embodiment of the disclosure CMOS devices on SOI regions are manufactured on semiconductors having different orientations. According to another embodiment, an SOI device is contemplated as having a plurality of semiconductor regions having at least one of a different semiconductor material, crystalline lattice constant or lattice strain. Methods and processes for fabricating the different embodiments of the invention is also disclosed.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: November 11, 2008
    Assignee: International Business Machines Corporation
    Inventors: Guy M. Cohen, Alexander Reznicek, Katherine L. Saenger, Min Yang
  • Publication number: 20080258220
    Abstract: This invention teaches methods of combining ion implantation steps with in situ or ex situ heat treatments to avoid and/or minimize implant-induced amorphization (a potential problem for source/drain (S/D) regions in FETs in ultrathin silicon on insulator layers) and implant-induced plastic relaxation of strained S/D regions (a potential problem for strained channel FETs in which the channel strain is provided by embedded S/D regions lattice mismatched with an underlying substrate layer). In a first embodiment, ion implantation is combined with in situ heat treatment by performing the ion implantation at elevated temperature. In a second embodiment, ion implantation is combined with ex situ heat treatments in a “divided-dose-anneal-in-between” (DDAB) scheme that avoids the need for tooling capable of performing hot implants.
    Type: Application
    Filed: May 28, 2008
    Publication date: October 23, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Joel P. De Souza, Zhibin Ren, Alexander Reznicek, Devendra K. Sadana, Katherine L. Saenger, Ghavam Shahidi
  • Publication number: 20080251880
    Abstract: The present disclosure relates, generally, to a semiconductor substrate with a planarized surface comprising mixed single-crystal orientation regions and/or mixed single-crystal semiconductor material regions, where each region is electrically isolated. In accordance with one embodiment of the disclosure CMOS devices on SOI regions are manufactured on semiconductors having different orientations. According to another embodiment, an SOI device is contemplated as having a plurality of semiconductor regions having at least one of a different semiconductor material, crystalline lattice constant or lattice strain. Methods and processes for fabricating the different embodiments of the invention is also disclosed.
    Type: Application
    Filed: April 7, 2008
    Publication date: October 16, 2008
    Inventors: Guy M. Cohen, Alexander Reznicek, Katherine L. Saenger, Min Yang
  • Publication number: 20080248626
    Abstract: A hybrid orientation direct-semiconductor-bond (DSB) substrate with shallow trench isolation (STI) that is self-aligned to recrystallization boundaries is formed by patterning a hard mask layer for STI, a first amorphization implantation into openings in the hard mask layer, lithographic patterning of portions of a top semiconductor layer, a second amorphization implantation into exposed portions of the DSB substrate, recrystallization of the portions of the top semiconductor layer, and formation of STI utilizing the pattern in the hard mask layer. The edges of patterned photoresist for the second amorphization implantation are located within the openings in the patterned hard mask layer. Defective boundary regions formed underneath the openings in the hard mask layer are removed during the formation of STI to provide a leakage path free substrate. Due to elimination of a requirement for increased STI width, device density is increased compared to non-self-aligning process integration schemes.
    Type: Application
    Filed: April 5, 2007
    Publication date: October 9, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yaocheng Liu, Zhijiong Luo, Katherine L. Saenger, Chun-Yung Sung, Rajasekhar Venigalla, Haizhou Yin
  • Publication number: 20080224182
    Abstract: The present invention discloses the use of edge-angle-optimized solid phase epitaxy for forming hybrid orientation substrates comprising changed-orientation Si device regions free of the trench-edge defects typically seen when trench-isolated regions of Si are recrystallized to the orientation of an underlying single-crystal Si template after an amorphization step. For the case of amorphized Si regions recrystallizing to (100) surface orientation, the trench-edge-defect-free recrystallization of edge-angle-optimized solid phase epitaxy may be achieved in rectilinear Si device regions whose edges align with the (100) crystal's in-plane <100> directions.
    Type: Application
    Filed: March 7, 2008
    Publication date: September 18, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Katherine L. Saenger, Chun-yung Sung, Haizhou Yin
  • Publication number: 20080171426
    Abstract: A method for achieving uniaxial strain on originally biaxial-strained thin films after uniaxial strain relaxation induced by ion implantation is provided. The biaxial-strained thin film receives ion implantation after being covered by a patterned implant block structure. The strain in the uncovered region is relaxed by ion implantation, which induces the lateral strain relaxation in the covered region. When the implant block structure is narrow (dimension is comparable to the film thickness), the original biaxial strain will relax uniaxially in the lateral direction.
    Type: Application
    Filed: January 12, 2007
    Publication date: July 17, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhibin Ren, Katherine L. Saenger, Haizhou Yin
  • Publication number: 20080164493
    Abstract: Methods for electrodepositing germanium on various semiconductor substrates such as Si, Ge, SiGe, and GaAs are provided. The electrodeposited germanium can be formed as a blanket or patterned film, and may be crystallized by solid phase epitaxy to the orientation of the underlying semiconductor substrate by subsequent annealing. These plated germanium layers may be used as the channel regions of high-mobility channel field effect transistors (FETs) in complementary metal oxide semiconductor (CMOS) circuits.
    Type: Application
    Filed: January 5, 2007
    Publication date: July 10, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Hariklia Deligianni, Qiang Huang, Lubomyr T. Romankiw, Devendra K. Sadana, Katherine L. Saenger
  • Patent number: 7396407
    Abstract: The present invention discloses the use of edge-angle-optimized solid phase epitaxy for forming hybrid orientation substrates comprising changed-orientation Si device regions free of the trench-edge defects typically seen when trench-isolated regions of Si are recrystallized to the orientation of an underlying single-crystal Si template after an amorphization step. For the case of amorphized Si regions recrystallizing to (100) surface orientation, the trench-edge-defect-free recrystallization of edge-angle-optimized solid phase epitaxy may be achieved in rectilinear Si device regions whose edges align with the (100) crystal's in-plane <100> directions.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: July 8, 2008
    Assignee: International Business Machines Corporation
    Inventors: Katherine L. Saenger, Chun-yung Sung, Haizhou Yin
  • Patent number: 7393776
    Abstract: A method to form a closed air gap interconnect structure is described. A starting structure made of regions of a permanent support dielectric under the interconnect lines and surrounding interconnect vias with one or more sacrificial dielectrics present in the remaining portions of the interconnect structure, is capped with a dielectric barrier which is perforated using a stencil with a regular array of holes. The sacrificial dielectrics are then extracted through the holes in the dielectric barrier layer such that the interconnect lines are substantially surrounded by air except for the regions of the support dielectric under the lines. The holes in the cap layer are closed off by depositing a second barrier dielectric so that a closed air gap is formed. Several embodiments of this method and the resulting structures are described.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: July 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Matthew E Colburn, Timothy J Dalton, Elbert Huang, Anna Karecki, legal representative, Satya V Nitta, Sampath Purushothaman, Katherine L Saenger, Maheswaran Surendra, Simon M Karecki
  • Publication number: 20080142894
    Abstract: A method is provided for electroplating a gate metal or other conducting or semiconducting material directly on a dielectric such as a gate dielectric. The method involves selecting a substrate, dielectric layer, and electrolyte solution or melt, wherein the combination of the substrate, dielectric layer, and electrolyte solution or melt allow an electrochemical current to be passed from the substrate through the dielectric layer into the electrolyte solution or melt. Methods are also provided for electrochemical modification of dielectrics utilizing through-dielectric current flow.
    Type: Application
    Filed: February 29, 2008
    Publication date: June 19, 2008
    Applicant: International Business Machines Corporation
    Inventors: Philippe M. Vereecken, Veeraraghavan S. Basker, Cyril Cabral, Emanuel I. Cooper, Hariklia Deligianni, Martin M. Frank, Rajarao Jammy, Vamsi Krishna Paruchuri, Katherine L. Saenger, Xiaoyan Shao
  • Publication number: 20080108184
    Abstract: A method utilizing localized amorphization and recrystallization of stacked template layers is provided for making a planar substrate having semiconductor layers of different crystallographic orientations. Also provided are hybrid-orientation semiconductor substrate structures built with the methods of the invention, as well as such structures integrated with various CMOS circuits comprising at least two semiconductor devices disposed on different surface orientations for enhanced device performance.
    Type: Application
    Filed: December 4, 2006
    Publication date: May 8, 2008
    Applicant: International Business Machines Corporation
    Inventors: Joel P. de Souza, John A. Ott, Alexander Reznicek, Katherine L. Saenger
  • Patent number: 7368045
    Abstract: A method is provided for electroplating a gate metal or other conducting or semiconducting material directly on a dielectric such as a gate dielectric. The method involves selecting a substrate, dielectric layer, and electrolyte solution or melt, wherein the combination of the substrate, dielectric layer, and electrolyte solution or melt allow an electrochemical current to be passed from the substrate through the dielectric layer into the electrolyte solution or melt. Methods are also provided for electrochemical modification of dielectrics utilizing through-dielectric current flow.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: May 6, 2008
    Assignee: International Business Machines Corporation
    Inventors: Philippe M. Vereecken, Veeraraghavan S. Basker, Cyril Cabral, Jr., Emanuel I. Cooper, Hariklia Deligianni, Martin M. Frank, Rajarao Jammy, Vamsi Krishna Paruchuri, Katherine L. Saenger, Xiaoyan Shao