Patents by Inventor Katsuyoshi Kondoh

Katsuyoshi Kondoh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10213837
    Abstract: A method for producing titanium powder containing a solid-soluted nitorogen comprises the step of heating titanium powder comprised of titanium particles in a nitrogen-containing atmosphere to dissolve nitrogen atoms and form a solid solution of nitrogen atom in a matrix of the titanium particle.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: February 26, 2019
    Assignees: HI-LEX CORPORATION, KATSUYOSHI KONDOH
    Inventor: Katsuyoshi Kondoh
  • Publication number: 20180318930
    Abstract: An nitrogen solid solution titanium sintered compact includes a matrix made of a titanium component having an ?-phase, nitrogen atoms dissolved as a solute of solid solution in a crystal lattice of the titanium component, and metal atoms dissolved as a solute of solid solution in the crystal lattice of the titanium component.
    Type: Application
    Filed: October 26, 2017
    Publication date: November 8, 2018
    Inventor: Katsuyoshi KONDOH
  • Publication number: 20180311730
    Abstract: An oxygen solid solution titanium sintered compact includes a matrix made of a titanium component having an ?-phase, oxygen atoms dissolved as a solute of solid solution in a crystal lattice of the titanium component, and metal atoms dissolved as a solute of solid solution in the crystal lattice of the titanium component.
    Type: Application
    Filed: October 26, 2016
    Publication date: November 1, 2018
    Inventor: Katsuyoshi KONDOH
  • Publication number: 20170120340
    Abstract: An aluminum-based composite material includes a plurality of coarse crystalline grains (3) of pure aluminum, and a plurality of fine crystalline grains (4) each having an aluminum matrix (1), and a dispersion material (2) dispersed inside the aluminum matrix and formed by reacting a portion or all of an additive with aluminum in the aluminum matrix. The fine crystalline grains exist among the coarse crystalline grains, and the fine crystalline grains have crystalline grain diameters smaller than crystalline grain diameters of the coarse crystalline grains.
    Type: Application
    Filed: October 27, 2016
    Publication date: May 4, 2017
    Applicant: YAZAKI CORPORATION
    Inventors: Katsuyoshi KONDOH, Yasufumi OTSUKA, Satoru YOSHINAGA
  • Publication number: 20170008087
    Abstract: A method for producing titanium powder containing a solid-soluted nitorogen comprises the step of heating titanium powder comprised of titanium particles in a nitrogen-containing atmosphere to dissolve nitrogen atoms and form a solid solution of nitrogen atom in a matrix of the titanium particle.
    Type: Application
    Filed: December 26, 2014
    Publication date: January 12, 2017
    Inventor: Katsuyoshi KONDOH
  • Patent number: 9518314
    Abstract: A production method of an extrusion billet includes a step of preparing a plate or lump starting material comprising a magnesium alloy, a step of performing a plastic deformation process at a rolling reduction of 70% or more to the starting material at a temperature of 250° C. or lower to introduce a strain without generating dynamic recrystallization, a step of producing powder by granulating the material after the plastic deformation process, and a step of producing a powder billet by compressing the powder.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: December 13, 2016
    Assignees: KURIMOTO LTD.
    Inventors: Katsuyoshi Kondoh, Makoto Hotta, Jinsun Liao, Kantaro Kaneko, Norio Fujii, Hirohito Kametani, Akihiko Koshi
  • Publication number: 20160332233
    Abstract: A method for producing titanium powder containing a solid-soluted oxygen comprises the steps of: heating titanium powder comprised of titanium particles in an oxygen-containing atmosphere in a temperature range of 160° or higher and less than 600° C. to form a titanium oxide layer on the surface of the titanium particle; and heating the titanium powder having the titanium oxide layer in an oxygen-free atmosphere in a temperature range of 450° C. or higher and a melting point of the titanium oxide layer or lower to decompose the titanium oxide layer on the surface of the titanium particle so that oxygen atoms dissociated form a solid solution in a matrix of the titanium particle.
    Type: Application
    Filed: December 26, 2014
    Publication date: November 17, 2016
    Inventor: Katsuyoshi Kondoh
  • Publication number: 20150064046
    Abstract: The present invention provides a Ti material extremely high in mechanical strength. A Ti/TiC composite, wherein no simple substance of carbon essentially exists in a TiC, and wherein 0.3 mass % or more of oxygen is solidified in the composite. A Ti/TiC composite has an upper yield point in a relation between a tensile strength and an elongation.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 5, 2015
    Applicant: SHOWA DENKO K.K.
    Inventors: Katsuyoshi KONDOH, Shufeng LI
  • Patent number: 8273290
    Abstract: A method for producing a composite metal material includes preparing a solution containing a surfactant having both hydrophilicity and hydrophobicity, dispersing a nanosized to micro-sized fine carbonaceous substance into a state of being monodispersed in the solution, bringing the solution having the dispersed fine carbonaceous substance into contact with surface of a metal powder particle, drying the metal powder particle to make the fine carbonaceous substance in the monodispersed state adhere to the surface of the metal powder particle via a component of the solution, and thermally decomposing and removing the solution component adhering to the surface of the metal powder particle by heat-treating the metal powder particle either in a hydrogen-containing reducing atmosphere or in a vacuum atmosphere to partially expose the surface of the metal powder particle out of the adhering fine carbonaceous substance, and thus progress diffusion and sintering among the metal powder particles through exposed parts.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: September 25, 2012
    Assignees: National University Corporation Hokkaido University
    Inventors: Katsuyoshi Kondoh, Bunshi Fugetsu
  • Patent number: 8250897
    Abstract: A method for producing a high strength workpiece material includes the steps of: placing an alloy material 10 into a central space of a cylindrical mold 2; vertically compressing both end faces of the material in the central space with a press member 5 and a first support member 3, thereby causing one lengthwise end of the material to flow radially outward along an end face of the cylindrical mold 2 to form an expanded part; bringing the press member 5 into contact with a lengthwise end face of the expanded part so as to press the expanded part against the end face of the cylindrical mold 2; and increasing the distance between the press member 5 and the end face of the cylindrical mold 2 while decreasing the distance between the press member 5 and the first support member 3, thereby continuously causing the radially outward flow from one end to another end of the material to gradually increase the thickness of the expanded part.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: August 28, 2012
    Assignee: Gohsyu Co., Ltd.
    Inventors: Shigeru Nishigori, Toru Akita, Yoshinori Goho, Katsuyoshi Kondoh
  • Patent number: 8178067
    Abstract: A production method of amorphous silicon oxide powder comprises a step of preparing a wood, agricultural crop or plant containing hexose and/or pentose and silicon oxide as a starting raw material, a step of hydrolyzing the starting raw material with nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid or organic acid to reduce a content of the hexose to 10% by weight or less and/or a content of the pentose to 20% by weight or less, and a step of burning residue yielded in the hydrolyzing step at a temperature of 400° C. to 1200° C.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: May 15, 2012
    Assignee: Kurimoto, Ltd.
    Inventors: Katsuyoshi Kondoh, Yoshisada Michiura
  • Publication number: 20120027638
    Abstract: A high-strength copper alloy contains 20 to 45% of zinc, 0.3 to 1.5% of iron, 0.3 to 1.5% of chromium, and a balance of copper, based on mass.
    Type: Application
    Filed: April 16, 2010
    Publication date: February 2, 2012
    Applicant: San-Etsu Metals Co., Ltd.
    Inventors: Yoshiharu Kosaka, Akimichi Kojima, Katsuyoshi Kondoh
  • Patent number: 7998448
    Abstract: A production method of amorphous silica comprises a step of preparing organic waste containing silicon oxide as a starting material, a step of immersing the organic waste in a carboxylic acid aqueous solution having a hydroxyl group, a step of washing the organic waste in water, and a step of heating the organic waste in the air atmosphere.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: August 16, 2011
    Assignees: Kurimoto, Ltd.
    Inventors: Katsuyoshi Kondoh, Yoshisada Michiura, Junko Umeda
  • Publication number: 20110150694
    Abstract: A Ti particle-dispersed magnesium-based composite material is a material having titanium particles uniformly dispersed in a magnesium matrix. Magnesium that forms the matrix and titanium particles are bonded together,) with satisfactory wettability without titanium oxide at an interface therebetween. The Ti particle-dispersed magnesium-based composite material has a tensile strength of 230 MPa or more.
    Type: Application
    Filed: March 16, 2009
    Publication date: June 23, 2011
    Applicant: Kurimoto Ltd.
    Inventors: Katsuyoshi Kondoh, Kantaro Kaneko
  • Publication number: 20110142710
    Abstract: A Ti particle-dispersed magnesium-based composite material is a material having titanium particles uniformly dispersed in a magnesium matrix, and is characterized by having a titanium-aluminum compound layer at an interface between the magnesium alloy matrix and the titanium particles dispersed in the magnesium alloy matrix.
    Type: Application
    Filed: March 16, 2009
    Publication date: June 16, 2011
    Applicant: KURIMOTO LTD.
    Inventors: Katsuyoshi Kondoh, Kantaro Kaneko
  • Publication number: 20110089272
    Abstract: A method for manufacturing a magnesium alloy material includes the steps of: preparing a sheet or block of starting material that is made of a magnesium alloy; subjecting the starting material to a plastic working process at a temperature of 250° C. or less and a reduction ratio of 70% or more to introduce strain without causing dynamic recrystallization; pulverizing the material subjected to said plastic working process into powder; compressively deforming said powder by passing said powder between a pair of rotating rolls; and successively crushing the compressively deformed powder, which has passed between the pair of rotating rolls, into granular powder.
    Type: Application
    Filed: December 5, 2008
    Publication date: April 21, 2011
    Applicants: Katsuyoshi, KURIMOTO, LTD.
    Inventors: Katsuyoshi Kondoh, Makoto Hotta, Jinsun Liao, Kantaro Kaneko, Norio Fujii, Hirohito Kametani, Akihiko Koshi
  • Patent number: 7922967
    Abstract: A high-strength and high-toughness magnesium based alloy contains, by weight, 1 to 8% rare earth element and 1 to 6% calcium and the maximum crystal grain diameter of magnesium constituting a matrix is not more than 30 ?m. At least one intermetallic compound (6) of rare earth element and calcium has a maximum grain diameter of 20 ?m or less and it is dispersed in a crystal grain boundary (5) and a crystal grain (4) of magnesium of the matrix.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: April 12, 2011
    Assignee: Toudai TLD, Ltd.
    Inventor: Katsuyoshi Kondoh
  • Patent number: 7909948
    Abstract: When starting raw material powder is passed through a pair of rolls (2a), plastic working is applied to the starting raw material powder, and the crystal grain diameter of a metal or alloy constituting a matrix of the powder particle after processed is miniaturized. According to the thus provided alloy powder raw material, the maximum size of the powder particle is not more than 10 mm and the minimum size of the powder particle is not less than 0.1 mm, and the maximum crystal grain diameter of the metal or alloy constituting the matrix of the powder particle is not more than 30 ?m.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: March 22, 2011
    Assignees: Gohsyu Co., Ltd., Kurimoto, Ltd.
    Inventors: Katsuyoshi Kondoh, Mitsuhiro Goto, Hideaki Fukui, Shuji Shiozaki, Hajime Agata, Katsuhito Itakura, Kazunori Fukumoto
  • Publication number: 20110056591
    Abstract: Brass alloy powder has a brass composition formed by a mixed phase of ?-phase and ?-phase, and contains 0.5 to 5.0 mass % of chromium. The chromium includes a component that is solid-solved in a mother phase of brass, and a component that is precipitated at crystal grain boundaries.
    Type: Application
    Filed: April 24, 2009
    Publication date: March 10, 2011
    Applicants: Japan Science and Technology Agency, Osaka University
    Inventors: Katsuyoshi Kondoh, Gen Katano, Hisashi Imai, Yoshiharu Kosaka, Akimichi Kojima
  • Publication number: 20100261028
    Abstract: A method for producing a composite metal material includes preparing a solution containing a surfactant having both hydrophilicity and hydrophobicity, dispersing a nanosized to micro-sized fine carbonaceous substance into a state of being monodispersed in the solution, bringing the solution having the dispersed fine carbonaceous substance into contact with surface of a metal powder particle, drying the metal powder particle to make the fine carbonaceous substance in the monodispersed state adhere to the surface of the metal powder particle via a component of the solution, and thermally decomposing and removing the solution component adhering to the surface of the metal powder particle by heat-treating the metal powder particle either in a hydrogen-containing reducing atmosphere or in a vacuum atmosphere to partially expose the surface of the metal powder particle out of the adhering fine carbonaceous substance, and thus progress diffusion and sintering among the metal powder particles through exposed parts.
    Type: Application
    Filed: October 16, 2008
    Publication date: October 14, 2010
    Inventors: Katsuyoshi Kondoh, Bunshi Fugetsu