Patents by Inventor Kawin Setsompop

Kawin Setsompop has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160341807
    Abstract: Systems and methods for simultaneous multislice (“SMS”} magnetic resonance imaging (“MRI”}, in which a random blip gradient encoding scheme is utilized to impart a different phase to each of a plurality of different slice locations. Because of the random blip gradient encoding, the amount of the imparted phase is randomized for each phase encoding step in a Cartesian k-space trajectory. This data acquisition strategy leads to incoherent aliasing artifacts across the simultaneously excited slices. Images of the individual slices can be reconstructed using a compressed sensing framework.
    Type: Application
    Filed: January 30, 2015
    Publication date: November 24, 2016
    Inventors: Berkin Bilgic, Kawin Setsompop, Lawrence L. Wald
  • Publication number: 20160025833
    Abstract: A method for maximizing the signal-to-noise ratio (“SNR”) in a combined image produced using a parallel magnetic resonance imaging (“MRI”) technique is provided. The image combination used in such techniques require an accurate estimate of the noise covariance. Typically, the thermal noise covariance matrix is used as this estimate; however, in several applications, including accelerated parallel imaging and functional MRI, the noise covariance across the coil channels differs substantially from the thermal noise covariance. By combining the individual channels with more accurate estimates of the channel noise covariance, SNR in the combined data is significantly increased. This improved combination employs a regularization of noise covariance on a per-voxel basis.
    Type: Application
    Filed: March 12, 2014
    Publication date: January 28, 2016
    Inventors: Jonathan R. POLIMENI, Kawin SETSOMPOP, Lawrence L. WALD
  • Publication number: 20150346300
    Abstract: Magnetic resonance fingerprinting (MRF) with simultaneous multivolume acquisition (SMVA) is described. One example nuclear magnetic resonance (NMR) apparatus includes an NMR logic that repetitively and variably samples (k, t, E) spaces associated with different volumes (e.g., slices) in an object to simultaneously acquire sets of NMR signals that are associated with different points in the (k, t, E) spaces. Sampling is performed with t and/or E varying in a non-constant way. The NMR apparatus may also include a signal logic that produces an NMR signal evolution from the NMR signals and compares the NMR signal evolution to reference signal evolutions. Since different volumes are excited differently, resulting signal evolutions can be acquired simultaneously from the different volumes and NMR parameters may be simultaneously determined for the multiple volumes, which reduces acquisition time and parameter map creation time.
    Type: Application
    Filed: May 14, 2015
    Publication date: December 3, 2015
    Inventors: Kawin Setsompop, Mark Griswold, Huihui Ye, Lawrence Wald, Dan Ma, Yun Jiang
  • Publication number: 20150346301
    Abstract: Methods, apparatus, and other embodiments associated with producing a quantitative parameter map using magnetic resonance fingerprinting (MRF) are described. One example apparatus includes a data store that stores a grouped set of MRF signal evolutions, including a group representative signal and a low-rank representative, a set of logics that collects a received signal evolution from a tissue experiencing nuclear magnetic resonance (NMR) in response to an MRF excitation, a correlation logic that computes a correlation between a portion of the received signal evolution and a portion of a group representative signal, a pruning logic that generates a pruned grouped set, and a matching logic that determines matching quantitative parameters based on the received signal evolution and the low-rank representative.
    Type: Application
    Filed: May 14, 2015
    Publication date: December 3, 2015
    Inventors: Stephen Cauley, Mark Griswold, Kawin Setsompop, Lawrence Wald
  • Publication number: 20150323633
    Abstract: Systems and methods for reconstructing images using a hierarchically semiseparable (“HSS”) solver to compactly represent the inverse encoding matrix used in the reconstruction are provided. The reconstruction method includes solving for the actual inverse of the encoding matrix using a direct (i.e., non-iterative) HSS solver. This approach is contrary to conventional reconstruction methods that repetitively evaluate forward models (e.g., compressed sensing or parallel imaging forward models).
    Type: Application
    Filed: May 8, 2015
    Publication date: November 12, 2015
    Inventors: Stephen Cauley, Berkin Bilgic, Kawin Setsompop, Lawrence Wald
  • Publication number: 20150323634
    Abstract: A method for accelerated segmented magnetic resonance (MR) image data acquisition includes using a plurality of RF pulses to excite one or more slices of an anatomical area of interest according to a predetermined slice acceleration factor. Next, a collapsed image comprising the slices is acquired using a consecutive segment acquisition process. Then, a parallel image reconstruction method is applied to the collapsed image to separate the collapsed image into a plurality of slice images.
    Type: Application
    Filed: May 7, 2014
    Publication date: November 12, 2015
    Applicants: Massachusetts General Hospital, Siemens Medical Solutions USA, Inc.
    Inventors: Jonathan Rizzo Polimeni, Himanshu Bhat, Keith Aaron Heberlein, Kawin Setsompop, Thomas Witzel, Stephen Farman Cauley
  • Publication number: 20150310639
    Abstract: Described here are systems and methods for quantitative susceptibility mapping (“QSM”) using magnetic resonance imaging (“MRI”). Susceptibility maps are reconstructed from phase images using an automatic regularization technique based in part on variable splitting. Two different regularization parameters are used, one, ?, that controls the smoothness of the final susceptibility map and one, ?, that controls the convergence speed of the reconstruction. For instance, the regularization parameters can be determined using an L-curve heuristic to find the parameters that yield the maximum curvature on the L-curve. The ? parameter can be determined based on an l2-regularization and the ? parameter can be determined based on the iterative l1-regularization used to reconstruct the susceptibility map.
    Type: Application
    Filed: April 22, 2015
    Publication date: October 29, 2015
    Inventors: Berkin Bilgic, Kawin Setsompop
  • Patent number: 9081055
    Abstract: A method for reducing local specific absorption rate (“SAR”) during imaging of a subject with a magnetic resonance imaging (“MRI”) system is provided. A radio frequency (“RF”) excitation pattern is selected for an RF coil array to be used during the imaging. In this RF excitation pattern, locations in which local SAR exceeds a preselected threshold value are identified. Examples of threshold values include regulatory limits on local SAR. Using the identified local SAR hotspot locations, a cancellation electric field pattern that is defined by so-called “dark modes” of the coil array is determined. Imaging of the subject commences using the RF coil array and the MRI system, in which the RF coil array is used to simultaneously produce an RF excitation field and a cancellation electric field using the respective field patterns. This simultaneous production of the RF excitation and cancellation electric fields reduces local SAR at the hotspot locations.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: July 14, 2015
    Assignee: THE GENERAL HOSPITAL CORPORATION
    Inventors: Lawrence L Wald, Kawin Setsompop
  • Publication number: 20150177353
    Abstract: A method for imaging a subject with a magnetic resonance imaging (MRI) system using controlled aliasing is provided. A radio frequency (RF) excitation field is applied to excite the spins in a volume-of-interest that may include multiple slice locations. Using the MRI system, a readout magnetic field gradient is established following the application of the RF excitation field to form echo signals. These echo signal receive a differential encoding by way of establishing, while the readout gradient is established, alternating magnetic field gradients along two directions, such as the partition-encoding and phase-encoding directions. Image data is acquired from the formed echo signals and images of the subject are reconstructed from the acquired image data.
    Type: Application
    Filed: February 9, 2015
    Publication date: June 25, 2015
    Applicant: The General Hospital Corporation
    Inventors: Kawin Setsompop, Lawrence L. Wald
  • Patent number: 8981776
    Abstract: A method for imaging a subject with a magnetic resonance imaging (MRI) system using controlled aliasing is provided. A radio frequency (RF) excitation field is applied to excite the spins in a volume-of-interest that may include multiple slice locations. Using the MRI system, a readout magnetic field gradient is established following the application of the RF excitation field to form echo signals. These echo signal receive a differential encoding by way of establishing, while the readout gradient is established, alternating magnetic field gradients along two directions, such as the partition-encoding and phase-encoding directions. Image data is acquired from the formed echo signals and images of the subject are reconstructed from the acquired image data.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: March 17, 2015
    Assignee: The General Hospital Corporation
    Inventors: Kawin Setsompop, Lawrence L Wald
  • Patent number: 8866478
    Abstract: In a magnetic resonance apparatus and operating method therefor, and in a processor that is programmed to design RF pulses for operating such a magnetic resonance apparatus, the RF pulses are designed to mitigate off-resonance effects caused by inhomogeneity of the basic (B0) magnetic field in the magnetic resonance apparatus. The RF pulses of a parallel transmit array are designed with different spatial phase distributions, that deviate from a constant phase from pulse-to-pulse, with the absolute value of the difference between respective spatial phase distributions of any two successively radiated RF pulses corresponding to the off-resonance that is caused by B0-inhomogeneity during the time between the radiation of the successive pulses.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: October 21, 2014
    Assignees: Siemens Aktiengesellschaft, The General Hospital Corp., Massachusetts Institute of Technology
    Inventors: Elfar Adalsteinsson, Hans-Peter Fautz, Kawin Setsompop, Lawrence Wald
  • Publication number: 20140225612
    Abstract: A system and method for medical imaging using a magnetic resonance imaging system includes performing a segmented echo planar imaging (EPI) pulse sequence. The pulse sequence includes performing multiple radio frequency (RF) excitation pulses designed to excite multiple imaging slices across the subject simultaneously. A gradient encoding scheme applied along the slice-encoding direction is implemented to impart controlled phase shifts to the different imaging slices. Additionally, the multiple RF excitation pulses can be designed to further control an overlap of imaging data acquired from adjacent slices of the multiple imaging slices based on a selected offset. The acquired imaging data is reconstructed using a parallel imaging reconstruction method that separates overlapped slices in the imaging data to provide a series of images with respective images for each of the multiple imaging slices across the subject.
    Type: Application
    Filed: February 13, 2014
    Publication date: August 14, 2014
    Inventors: Jonathan R. POLIMENI, Lawrence L. WALD, Kawin Setsompop
  • Publication number: 20130099784
    Abstract: A method for imaging a subject with a magnetic resonance imaging (MRI) system using controlled aliasing is provided. A radio frequency (RF) excitation field is applied to excite the spins in a volume-of-interest that may include multiple slice locations. Using the MRI system, a readout magnetic field gradient is established following the application of the RF excitation field to form echo signals. These echo signal receive a differential encoding by way of establishing, while the readout gradient is established, alternating magnetic field gradients along two directions, such as the partition-encoding and phase-encoding directions. Image data is acquired from the formed echo signals and images of the subject are reconstructed from the acquired image data.
    Type: Application
    Filed: April 23, 2012
    Publication date: April 25, 2013
    Inventors: Kawin Setsompop, Lawrence L. Wald
  • Patent number: 8405395
    Abstract: A method for multi-slice magnetic resonance imaging, in which image data is acquired simultaneously from multiple slice locations using a radio frequency coil array, is provided. By way of example, a modified EPI pulse sequence is provided, and includes a series of magnetic gradient field “blips” that are applied along a slice-encoding direction contemporaneously with phase-encoding blips common to EPI sequences. The slice-encoding blips are designed such that phase accruals along the phase-encoding direction are substantially mitigated, while providing that signal information for each sequentially adjacent slice location is cumulatively shifted by a percentage of the imaging FOV. This percentage FOV shift in the image domain provides for more reliable separation of the aliased signal information using parallel image reconstruction methods such as SENSE.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: March 26, 2013
    Assignee: The General Hospital Corporation
    Inventors: Kawin Setsompop, Lawrence L. Wald
  • Publication number: 20130015854
    Abstract: In a magnetic resonance apparatus and operating method therefor, and in a processor that is programmed to design RF pulses for operating such a magnetic resonance apparatus, the RF pulses are designed to mitigate off-resonance effects caused by inhomogeneity of the basic (B0) magnetic field in the magnetic resonance apparatus. The RF pulses of a parallel transmit array are designed with different spatial phase distributions, that deviate from a constant phase from pulse-to-pulse, with the absolute value of the difference between respective spatial phase distributions of any two successively radiated RF pulses corresponding to the off-resonance that is caused by B0-inhomogeneity during the time between the radiation of the successive pulses.
    Type: Application
    Filed: July 13, 2011
    Publication date: January 17, 2013
    Inventors: Elfar Adalsteinsson, Hans-Peter Fautz, Kawin Setsompop, Lawrence Wald
  • Publication number: 20130002249
    Abstract: A method for reducing local specific absorption rate (“SAR”) during imaging of a subject with a magnetic resonance imaging (“MRI”) system is provided. A radio frequency (“RF”) excitation pattern is selected for an RF coil array to be used during the imaging. In this RF excitation pattern, locations in which local SAR exceeds a preselected threshold value are identified. Examples of threshold values include regulatory limits on local SAR. Using the identified local SAR hotspot locations, a cancellation electric field pattern that is defined by so-called “dark modes” of the coil array is determined. Imaging of the subject commences using the RF coil array and the MRI system, in which the RF coil array is used to simultaneously produce an RF excitation field and a cancellation electric field using the respective field patterns. This simultaneous production of the RF excitation and cancellation electric fields reduces local SAR at the hotspot locations.
    Type: Application
    Filed: April 23, 2012
    Publication date: January 3, 2013
    Inventors: Lawrence L. Wald, Kawin Setsompop
  • Patent number: 8148985
    Abstract: A method for reducing maximum local specific absorption rate (“SAR”) in a magnetic resonance imaging (“MRI”) system is disclosed. More specifically, a plurality of candidate radio frequency (“RF”) pulses are designed and the manner in which they are applied to a subject is determined such that the maximum local SAR is substantially reduced relative to applying the candidate RF pulse that produces the lowest maximum local SAR alone. Put another way, this “time-multiplexing” of a set of RF pulses that each produce approximately the same excitation pattern yields a lower maximum local SAR than does transmitting the individual RF pulse having the lowest local SAR over many repetition times (“TRs”). A convex optimization method is utilized to determine the manner in which the RF pulses are multiplexed in time such that a substantially lower maximum local SAR is achieved.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: April 3, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Adam C Zelinski, Kawin Setsompop, Elfar Adalsteinsson, Vivek Goyal
  • Patent number: 8085044
    Abstract: A method for producing a spatially and spectrally selective radiofrequency (“RF”) excitation pulse includes establishing a desired spatial RF excitation pattern and establishing a desired spectral RF excitation pattern. The method also includes estimating an RF transmission profile map indicative of the transmission characteristics of an RF coil and determining, from the desired spatial and spectral excitation patterns and the estimated RF transmission profile map, at least one magnetic field gradient waveform indicative of locations in k-space to which RF energy is to be deposited. The method further includes determining, from the established spatial and spectral excitation patterns, the estimated RF transmission profile map, and the determined at least one gradient waveform, at least one RF excitation pulse waveform that will produce the desired spatial and spectral excitation patterns.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: December 27, 2011
    Assignee: The General Hospital Corporation
    Inventors: Kawin Setsompop, Borjan A. Gagoski, Elfar Adalsteinsson, Vijayanand Alagappan, Lawrence L Wald
  • Patent number: 8076939
    Abstract: A system and method for producing an image indicative of characteristics of a radiofrequency (“RF”) coil with a magnetic resonance imaging (“MRI”) system is disclosed. The method includes acquiring MR signals while performing a pulse sequence with the MRI system and driving the RF coil at a selected transmission power. This process is repeated a plurality of times to drive the RF coil at a different transmission powers during each repetition. A plurality of images are reconstructed from the acquired MR signals and an image indicative of RF reception characteristics of the RF coil is produced from the reconstructed images. Subsequently, an image indicative of RF transmission characteristics of the RF coil is produced using the image indicative of the RF receiver response. More specifically, only one data acquisition is necessary for each RF coil element to produce the image indicative of the RF transmission characteristics for that coil element.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: December 13, 2011
    Assignee: The General Hospital Corporation
    Inventors: Kawin Setsompop, Elfar Adalsteinsson, Vijayanand Alagappan, Lawrence Wald
  • Publication number: 20110254548
    Abstract: A method for multi-slice magnetic resonance imaging, in which image data is acquired simultaneously from multiple slice locations using a radio frequency coil array, is provided. By way of example, a modified EPI pulse sequence is provided, and includes a series of magnetic gradient field “blips” that are applied along a slice-encoding direction contemporaneously with phase-encoding blips common to EPI sequences. The slice-encoding blips are designed such that phase accruals along the phase-encoding direction are substantially mitigated, while providing that signal information for each sequentially adjacent slice location is cumulatively shifted by a percentage of the imaging FOV. This percentage FOV shift in the image domain provides for more reliable separation of the aliased signal information using parallel image reconstruction methods such as SENSE.
    Type: Application
    Filed: April 15, 2010
    Publication date: October 20, 2011
    Inventors: Kawin Setsompop, Lawrence L. Wald