Patents by Inventor Kazumichi Imai

Kazumichi Imai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9290804
    Abstract: A microparticle having a probe molecule able to capture a specific nucleic acid group to be analyzed is used to extract only the specific nucleic acid group to be analyzed from a nucleic acid sample and the microparticle is thereafter directly immobilized on a smooth plate, whereby a device for nucleic acid analysis is rapidly prepared. Immobilizing a single capture probe molecule onto an individual microparticle in advance and forming, at regular positions on the smooth substrate, an adhesion pad on which a functional group that binds to the microparticle has been introduced makes it possible to readily and rapidly prepare the device for nucleic analysis, where the nucleic acid sample to be analyzed is arranged molecule by molecule in a lattice shape on the smooth substrate.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: March 22, 2016
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Toshiro Saito, Kazumichi Imai, Takayuki Obara, Eri Tarasawa
  • Patent number: 9207235
    Abstract: Provided is a reaction device for nucleic acid analysis wherein microparticles, which carry a nucleic acid to be detected having been immobilized thereon, are aligned in a lattice form on a substrate according to the pixel size of a two-dimensional sensor. By this reaction device for nucleic acid analysis which is provided with a channel-forming reaction chamber on the substrate (101), the nucleic acid having been immobilized on the microparticles (103) on the substrate (101) is detected. The microparticles (103), which carry the nucleic acid to be detected having been immobilized thereon, are arranged by microstructures (102) aligned on the substrate (101).
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: December 8, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yoshiaki Sugimura, Masatoshi Narahara, Kazumichi Imai, Toshiro Saito, Ryoji Inaba, Takuya Matsui
  • Publication number: 20150308977
    Abstract: The present invention is intended to provide a method and a device for detecting a biomolecule with high sensitivity and high throughput over a wide dynamic range without requiring concentration adjustments of a sample in advance. The present invention specifically binds charge carriers to a detection target biomolecule, and detects the detection target biomolecule one by one by measuring a current change that occurs as the conjugate of the biomolecule and the charge carriers passes through a micropore. High-throughput detection of a biomolecule sample is possible with an array of detectors.
    Type: Application
    Filed: June 28, 2013
    Publication date: October 29, 2015
    Inventors: Toshiro Saito, Kenta Imai, Kyoko Imai, Kazumichi Imai, Itaru Yanagi, Yoshimitsu Yanagawa, Masahiko Ando, Naoshi Itabashi
  • Publication number: 20150212082
    Abstract: An object of the present invention is to provide a highly sensitive immunoanalysis method and analysis apparatus. The invention relates to an analysis method and an analysis apparatus which are constituted in such a way that a component to be measured is reacted with capture component specifically reacting thereto and the reactant is labeled when the component to be measured is present and which are characterized by analyzing the component to be measured with single-molecule sensitivity and resolution by arranging the labeled reactant in a spatially separated certain position and detecting the label of the labeled reactant.
    Type: Application
    Filed: June 21, 2013
    Publication date: July 30, 2015
    Inventors: Kyoko Imai, Toshiro Saito, Kazumichi Imai
  • Publication number: 20140295430
    Abstract: The method for analyzing biomolecules, includes the steps of: immobilizing biomolecules to be analyzed on surfaces of magnetic microparticles; reacting labeled probe molecules with the biomolecules to be analyzed; collecting and immobilizing the microparticles on a support substrate; and measuring a label on the support substrate. Since single-molecule immobilized magnetic microparticles are used in the present invention, the number of biomolecules can be counted, and since hybridization and an antigen-antibody reaction are performed with the microparticles having biomolecules immobilized thereon dispersed, the reaction can be rapidly performed. Further, the type and the abundance of biomolecules of interest can be determined at a single molecular level, so as to evaluate, in particular, the absolute concentration of biomolecules.
    Type: Application
    Filed: October 4, 2012
    Publication date: October 2, 2014
    Inventors: Toshiro Saito, Koshin Hamasaki, Satoshi Takahashi, Muneo Maeshima, Kyoko Imai, Kazumichi Imai, Ryuji Tao
  • Publication number: 20140200162
    Abstract: A convenient method for nucleic acid analysis is provided, which enables 1000 or more types of nucleic acid to be analyzed collectively with high comprehensiveness and with a dynamic range of at least four digits. In particular, provided is a very effective analytical method especially for untranslated RNAs and microRNAs, of which the types of target nucleic acids is 10000 or lower. Nucleic acids can be analyzed conveniently and rapidly with high comprehensiveness and quantitative performance at single-molecule sensitivity and resolution by following the steps of: preparing a group of target nucleic acid fragments one molecule at a time and hybridizing the nucleic acid molecules, which have known base sequences and have been labeled with the fluorescence substances, with the group of the target nucleic acid fragments to detect the fluorescence substances labeling the hybridized nucleic acid molecules.
    Type: Application
    Filed: May 16, 2012
    Publication date: July 17, 2014
    Applicant: HITACHI HIGH TECHNOLOGIES CORPORATION
    Inventors: Toshiro Saito, Koshin Hamasaki, Satoshi Takahashi, Muneo Maeshima, Kyoko Imai, Kazumichi Imai, Ryuji Tao
  • Publication number: 20130316336
    Abstract: Provided is an analyzer capable of reducing the amount of wasted reagents and shortening time required for solution sending, thus increasing throughput for analysis. A microsyringe sucks a minimum required amount of reagent that is substantially the same amount of capacity of a flow cell to a sampling nozzle. Then, the sampling nozzle is inserted into an injection port of the flow cell, and the reagent is injected into the flow cell by driving the microsyringe. The inside of the sampling nozzle is cleaned by moving the sampling nozzle to the cleaning tank and ejecting cleaning water from the sampling nozzle, and the outside of the sampling nozzle is cleaned by spraying cleaning water from an inner wall of the cleaning tank.
    Type: Application
    Filed: January 13, 2012
    Publication date: November 28, 2013
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Takuya Matsui, Ryoji Inaba, Kazumichi Imai, Ryusuke Kimura
  • Publication number: 20130309675
    Abstract: A microparticle having a probe molecule able to capture a specific nucleic acid group to be analyzed is used to extract only the specific nucleic acid group to be analyzed from a nucleic acid sample and the microparticle is thereafter directly immobilized on a smooth plate, whereby a device for nucleic acid analysis is rapidly prepared. Immobilizing a single capture probe molecule onto an individual microparticle in advance and forming, at regular positions on the smooth substrate, an adhesion pad on which a functional group that binds to the microparticle has been introduced makes it possible to readily and rapidly prepare the device for nucleic analysis, where the nucleic acid sample to be analyzed is arranged molecule by molecule in a lattice shape on the smooth substrate.
    Type: Application
    Filed: January 26, 2012
    Publication date: November 21, 2013
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Toshiro Saito, Kazumichi Imai, Takayuki Obara, Eri Tarasawa
  • Patent number: 8545686
    Abstract: The present invention relates to detection of an emission spectrum by irradiating excitation light onto a plurality of electrophoretic paths and dispersing fluorescent light output from the electrophoretic paths in a direction approximately vertical to an electrophoretic direction. According to the invention, since an emission spectrum to be detected does not substantially change over time, it becomes possible to make observed emission spectrums completely correspond to various fluorescent dyes or various bases.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: October 1, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Ryoji Inaba, Tomoyuki Sakai, Motohiro Yamazaki, Takashi Gomi, Kazumichi Imai
  • Publication number: 20130157264
    Abstract: In a nucleic acid analysis device which detects a fluorescent dye on a nucleic acid sample immobilized on a surface of a substrate by exciting the fluorescent dye with an evanescent wave, the detection of a fluorescence signal with a high SN ratio is realized even for a long nucleic acid sample. The nucleic acid analysis device according to the invention is a nucleic acid analysis device in which a plurality of regions for immobilizing a nucleic acid sample are provided on a surface of a support base and a single molecule of a nucleic acid sample is immobilized on at least one of the regions, and which performs sequence determination by performing an extension reaction of the immobilized nucleic acid sample, wherein the immobilization of the single molecule of the nucleic acid sample on the support base is performed at two or more points.
    Type: Application
    Filed: July 19, 2011
    Publication date: June 20, 2013
    Inventors: Takayuki Obara, Kazumichi Imai, Toshiro Saito, Satoshi Takahashi
  • Publication number: 20120316087
    Abstract: Provided is a reaction device for nucleic acid analysis wherein microparticles, which carry a nucleic acid to be detected having been immobilized thereon, are aligned in a lattice form on a substrate according to the pixel size of a two-dimensional sensor. By this reaction device for nucleic acid analysis which is provided with a channel-forming reaction chamber on the substrate (101), the nucleic acid having been immobilized on the microparticles (103) on the substrate (101) is detected. The microparticles (103), which carry the nucleic acid to be detected having been immobilized thereon, are arranged by microstructures (102) aligned on the substrate (101).
    Type: Application
    Filed: December 1, 2010
    Publication date: December 13, 2012
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Yoshiaki Sugimura, Masatoshi Narahara, Kazumichi Imai, Toshiro Saito, Ryoji Inaba, Takuya Matsui
  • Patent number: 8201659
    Abstract: The present invention provides a recoilless speaker system capable of reducing adversely affecting vibration and generating an accurate and strong sound, and contributing to the realization of lighter weight, miniaturization and lower cost related to manufacturing, and also capable of being installed in a suspended state and generating sound even under zero gravity as long as air exists. The present invention includes a symmetrical and tubular resonance wall and a pair of or two or more pairs of vibration units symmetrically arranged on both left and right sides of the resonance wall, where the vibration units that form a pair are configured to vibrate synchronously with each other, the resonance wall is made from a flexible material so as to resonate to the vibration, a sound absorbing member is arranged in a tubular form along the inner wall of the resonance wall, and vibration suppressing materials are held at the sound absorbing member and/or the vibration unit.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: June 19, 2012
    Inventors: Kazumichi Imai, Yasue Imai
  • Publication number: 20110281320
    Abstract: An object of the present invention is to regularly align microparticles, on each of which a nucleic acid synthetase or a DNA probe capable of capturing a nucleic acid sample fragment is immobilized, on a support so as to improve throughput of nucleic acid analysis. The present invention relates to a method comprising immobilizing a nucleic acid synthetase, a DNA probe, or the like in advance to a microparticle, forming a pattern of metal pads each having a diameter smaller than the microparticle diameter with gold or the like on a support, and allowing a microparticle to be bound to the pads via a chemical bond. In addition, when the surfaces of microparticles are electrically charged, a pattern of metal pads each having a diameter equivalent to or larger than the microparticle diameter is formed with gold or the like on a support and a microparticle is allowed to be bound to the pads via a chemical bond.
    Type: Application
    Filed: January 18, 2010
    Publication date: November 17, 2011
    Inventors: Toshiro Saito, Kazumichi Imai
  • Patent number: 7883613
    Abstract: The present invention provides a capillary electrophoresis apparatus in which a capillary is easily attached to and detached from a migration medium filling unit without mixing impurities into the capillary. Mixture of impurities such as dust is also prevented when a capillary negative-electrode end is brought into contact with a sample stored in a vessel. Furthermore, temperature control is efficiently performed in the capillary. In the capillary electrophoresis apparatus, the whole of capillary array can be supported by grasping a grip portion by hand. A migration medium filling mechanism includes a slide mechanism which moves a polymer block with respect to a capillary head. The capillary electrophoresis apparatus includes a vessel in which a sample and a buffer can simultaneously be stored. Temperatures of the capillary and an irradiation and detection unit are controlled by a temperature control function provided in a thermostatic device.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: February 8, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Takashi Gomi, Ryoji Inaba, Motohiro Yamazaki, Hidenori Namba, Jin Matsumura, Hiromi Yamashita, Seiichi Ugai, Kazumichi Imai
  • Publication number: 20100294588
    Abstract: The present invention provides a recoilless speaker system capable of reducing adversely affecting vibration and generating an accurate and strong sound, and contributing to the realization of lighter weight, miniaturization and lower cost related to manufacturing, and also capable of being installed in a suspended state and generating sound even under zero gravity as long as air exists. The present invention includes a symmetrical and tubular resonance wall and a pair of or two or more pairs of vibration units symmetrically arranged on both left and right sides of the resonance wall, where the vibration units that form a pair are configured to vibrate synchronously with each other, the resonance wall is made from a flexible material so as to resonate to the vibration, a sound absorbing member is arranged in a tubular form along the inner wall of the resonance wall, and vibration suppressing materials are held at the sound absorbing member and/or the vibration unit.
    Type: Application
    Filed: April 21, 2008
    Publication date: November 25, 2010
    Inventors: Kazumichi Imai, Yasue Imai
  • Patent number: 7662269
    Abstract: The troublesomeness during the setting of a plurality of capillaries is eliminated by composing pairs of electrodes, which are electrically connected to the common electrode, and capillaries. By bringing electrodes installed in the vicinity of each capillary disposed at the pitch of wells on the side of sample plate (within the area of the wells) into electrical contact with a common electrode, the capillaries and electrodes are made integral in construction. When a voltage is applied to the electrophoretic instrument via a common electrode portion, the voltage is applied to the electrodes for each capillary. This enables an inexpensive microtiter plate, etc. to be used and a multiple of capillaries to be simultaneously inserted, attached and detached.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: February 16, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Muneo Maeshima, Kazumichi Imai, Masaya Kojima, Satoshi Takahashi, Hiromi Yamashita
  • Publication number: 20090134030
    Abstract: The troublesomeness during the setting of a plurality of capillaries is eliminated by composing pairs of electrodes, which are electrically connected to the common electrode, and capillaries. By bringing electrodes installed in the vicinity of each capillary disposed at the pitch of wells on the side of sample plate (within the area of the wells) into electrical contact with a common electrode, the capillaries and electrodes are made integral in construction. When a voltage is applied to the electrophoretic instrument via a common electrode portion, the voltage is applied to the electrodes for each capillary. This enables an inexpensive microtiter plate, etc. to be used and a multiple of capillaries to be simultaneously inserted, attached and detached.
    Type: Application
    Filed: January 23, 2009
    Publication date: May 28, 2009
    Inventors: Muneo Maeshima, Kazumichi Imai, Masaya Kojima, Satoshi Takahashi, Hiromi Yamashita
  • Patent number: 7338583
    Abstract: Analysis is performed efficiently in an electrophoresis apparatus while avoiding deterioration of samples. A plurality of sample plates are stored in frozen storage. When a particular sample plate is being analyzed, other sample plates are stored in a standby unit. In this way, a plurality of sample plates can be stored under cool conditions and analysis can be performed efficiently.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: March 4, 2008
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Motohiro Yamazaki, Kazumichi Imai
  • Publication number: 20070278101
    Abstract: The present invention provides a capillary electrophoresis apparatus in which a capillary is easily attached to and detached from a migration medium filling unit without mixing impurities into the capillary. Mixture of impurities such as dust is also prevented when a capillary negative-electrode end is brought into contact with a sample stored in a vessel. Furthermore, temperature control is efficiently performed in the capillary. In the capillary electrophoresis apparatus, the whole of capillary array can be supported by grasping a grip portion by hand. A migration medium filling mechanism includes a slide mechanism which moves a polymer block with respect to a capillary head. The capillary electrophoresis apparatus includes a vessel in which a sample and a buffer can simultaneously be stored. Temperatures of the capillary and an irradiation and detection unit are controlled by a temperature control function provided in a thermostatic device.
    Type: Application
    Filed: June 5, 2007
    Publication date: December 6, 2007
    Inventors: Takashi Gomi, Ryoji Inaba, Motohiro Yamazaki, Hidenori Namba, Jin Matsumura, Hiromi Yamashita, Seiichi Ugai, Kazumichi Imai
  • Publication number: 20060231400
    Abstract: The present invention relates to detection of an emission spectrum by irradiating excitation light onto a plurality of electrophoretic paths and dispersing fluorescent light output from the electrophoretic paths in a direction approximately vertical to an electrophoretic direction. According to the invention, since an emission spectrum to be detected does not substantially change over time, it becomes possible to make observed emission spectrums completely correspond to various fluorescent dyes or various bases.
    Type: Application
    Filed: April 5, 2006
    Publication date: October 19, 2006
    Inventors: Ryoji Inaba, Tomoyuki Sakai, Motohiro Yamazaki, Takashi Gomi, Kazumichi Imai