Patents by Inventor Kazuo Nishi

Kazuo Nishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7919779
    Abstract: The manufacturing method of a semiconductor device according to the present invention comprises steps of forming a metal film, an insulating film, and an amorphous semiconductor film in sequence over a first substrate; crystallizing the metal film and the amorphous semiconductor film; forming a first semiconductor element by using the crystallized semiconductor film as an active region; attaching a support to the first semiconductor element by using an adhesive; causing separation between the metal film and the insulating film; attaching a second substrate to the separated insulating film; separating the support by removing the adhesive; forming an amorphous semiconductor film over the first semiconductor element; and forming a second semiconductor element using the amorphous semiconductor film as an active region.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: April 5, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Toru Takayama, Yuugo Goto
  • Publication number: 20110073981
    Abstract: The present invention provides a semiconductor device formed over an insulating substrate, typically a semiconductor device having a structure in which mounting strength to a wiring board can be increased in an optical sensor, a solar battery, or a circuit using a TFT, and which can make it mount on a wiring board with high density, and further a method for manufacturing the same. According to the present invention, in a semiconductor device, a semiconductor element is formed on an insulating substrate, a concave portion is formed on a side face of the semiconductor device, and a conductive film electrically connected to the semiconductor element is formed in the concave portion.
    Type: Application
    Filed: December 10, 2010
    Publication date: March 31, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kazuo NISHI, Hiroki ADACHI, Junya MARUYAMA, Naoto KUSUMOTO, Yuusuke SUGAWARA, Tomoyuki AOKI, Eiji SUGIYAMA, Hironobu TAKAHASHI
  • Publication number: 20110062543
    Abstract: The present invention provides a photoelectric conversion device capable of detecting light from weak light to strong light and relates to a photoelectric conversion device having a photodiode having a photoelectric conversion layer; an amplifier circuit including a transistor; and a switch, where the photodiode and the amplifier circuit are electrically connected to each other by the switch when intensity of entering light is lower than predetermined intensity so that a photoelectric current is amplified by the amplifier circuit to be outputted, and the photodiode and part or all of the amplifier circuits are electrically disconnected by the switch so that a photoelectric current is reduced in an amplification factor to be outputted. According to such a photoelectric conversion device, light from weak light to strong light can be detected.
    Type: Application
    Filed: November 18, 2010
    Publication date: March 17, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kazuo NISHI, Tatsuya ARAO, Atsushi HIROSE, Yuusuke SUGAWARA, Naoto KUSUMOTO, Daiki YAMADA, Hidekazu TAKAHASHI
  • Patent number: 7888714
    Abstract: Considering further promotion of high output and miniaturization of a sensor element, it is an object of the present invention to form a plurality of elements in a limited area so that an area occupied by the element is reduced for integration. It is another object to provide a process which improves the yield of a sensor element. According to the present invention, a sensor element using an amorphous silicon film and an output amplifier circuit constituted by a thin film transistor are formed over a substrate having an insulating surface. In addition, a metal layer for protecting an exposed wire when a photoelectric conversion layer of the sensor element is patterned is provided between the photoelectric conversion layer and the wire connected to the thin film transistor.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: February 15, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Takahashi, Junya Maruyama, Daiki Yamada, Naoto Kusumoto, Kazuo Nishi, Hiroki Adachi, Yuusuke Sugawara
  • Publication number: 20110012218
    Abstract: In fabrication of a semiconductor device mounted on a wiring board, a semiconductor circuit portion is formed over a glass substrate. Then, an interposer having connection terminals are bonded to the semiconductor circuit portion. After that, the glass substrate is peeled off from the semiconductor circuit portion, and a mold resin is poured to cover the periphery of the semiconductor circuit portion from a direction of the separation plane. Then, the mold resin is heated under predetermined conditions to be hardened.
    Type: Application
    Filed: September 28, 2010
    Publication date: January 20, 2011
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yohei MONMA, Daiki YAMADA, Hidekazu TAKAHASHI, Yuusuke SUGAWARA, Kazuo NISHI
  • Publication number: 20110000545
    Abstract: A stack including a first electrode, a first impurity semiconductor layer having one conductivity type, an intrinsic semiconductor layer, a second impurity semiconductor layer having an opposite conductivity type to the one conductivity type, and a light-transmitting second electrode is formed over an insulator. The light-transmitting second electrode and the second impurity semiconductor layer have one or more openings. The shortest distance between one portion of the wall of one opening and an opposite portion of the wall of the same opening at the level of the interface between the second impurity semiconductor layer and the intrinsic semiconductor layer is made smaller than the diffusion length of holes in the intrinsic semiconductor layer. Thus, recombination is suppressed, so that more photocarriers are generated due to the openings and taken out as current, whereby conversion efficiency is increased.
    Type: Application
    Filed: June 22, 2010
    Publication date: January 6, 2011
    Inventors: Kazuo Nishi, Naoto Kusumoto
  • Publication number: 20100330729
    Abstract: The present invention provides a photoelectric conversion device in which a leakage current is suppressed. A photoelectric conversion device of the present invention comprises: a first electrode over a substrate; a photoelectric conversion layer including a first conductive layer having one conductivity, a second semiconductor layer, and a third semiconductor layer having a conductivity opposite to the one conductivity of the second semiconductor layer over the first electrode, wherein an end portion of the first electrode is covered with the first semiconductor layer; an insulating film, and a second electrode electrically connected to the third semiconductor film with the insulating film therebetween, over the insulating film, are formed over the third semiconductor film, and wherein a part of the second semiconductor layer and a part of the third semiconductor layer is removed in a region of the photoelectric conversion layer, which is not covered with the insulating film.
    Type: Application
    Filed: June 23, 2010
    Publication date: December 30, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yuusuke Sugawara, Kazuo Nishi, Tatsuya Arao, Daiki Yamada, Hidekazu Takahashi, Naoto Kusumoto
  • Patent number: 7851278
    Abstract: The present invention provides a semiconductor device formed over an insulating substrate, typically a semiconductor device having a structure in which mounting strength to a wiring board can be increased in an optical sensor, a solar battery, or a circuit using a TFT, and which can make it mount on a wiring board with high density, and further a method for manufacturing the same. According to the present invention, in a semiconductor device, a semiconductor element is formed on an insulating substrate, a concave portion is formed on a side face of the semiconductor device, and a conductive film electrically connected to the semiconductor element is formed in the concave portion.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: December 14, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Hiroki Adachi, Junya Maruyama, Naoto Kusumoto, Yuusuke Sugawara, Tomoyuki Aoki, Eiji Sugiyama, Hironobu Takahashi
  • Publication number: 20100307559
    Abstract: An object is to provide a photoelectric conversion device whose mechanical strength is increased without complicating a manufacturing process. The photoelectric conversion device includes a first cell having a photoelectric conversion function, a second cell having a photoelectric conversion function, and a structure body including a fibrous body which firmly attaches the first cell and the second cell. As a result, p-i-n junctions are bonded with the structure body in which the fibrous body is impregnated with an organic resin, which is a so-called prepreg. Thus, a photoelectric conversion device whose mechanical strength is increased can be realized while the manufacturing cost is reduced.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 9, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Yukie SUZUKI, Kazuo NISHI, Yasuyuki ARAI
  • Publication number: 20100307590
    Abstract: The present invention provides a technique in which a cheap zinc oxide material can be used as a light-transmitting conductive film of a photoelectric conversion device. The present invention is a photoelectric conversion device including, between a first electrode and a second electrode, at least one unit cell in which a first impurity semiconductor layer having one conductivity type, a semiconductor layer, and a second impurity semiconductor layer having a conductivity type opposite to the first impurity semiconductor layer are sequentially stacked and a semiconductor junction is included. The first electrode or the second electrode includes conductive oxynitride containing zinc and aluminum. In the conductive oxynitride containing zinc and aluminum: the relative proportion of the zinc is less than or equal to 47 at. % and higher than that of the aluminum; and the relative proportion of the aluminum is higher than that of nitrogen.
    Type: Application
    Filed: June 2, 2010
    Publication date: December 9, 2010
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei YAMAZAKI, Kazuo NISHI
  • Publication number: 20100307558
    Abstract: To provide a multi junction photoelectric conversion device which can be manufactured using a simple method. The photoelectric conversion device includes a first cell provided with a photoelectric conversion function, a second cell provided with a photoelectric conversion function, and a structure body having a function of fixing the first cell and the second cell to each other and electrically connecting the first cell and the second cell to each other. A multi junction photoelectric conversion device in which sufficient conductivity between p-i-n junctions is provided and semiconductor junctions are connected in series can be provided. With this structure, it is possible to obtain sufficient electromotive force.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 9, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Satohiro OKAMOTO, Kazuo NISHI
  • Publication number: 20100307557
    Abstract: A multi junction photoelectric conversion device that can be manufactured by a simple method is provided. In addition, a photoelectric conversion device whose mechanical strength is increased without complicating a manufacturing process is provided. A photoelectric conversion device includes a first cell having a photoelectric conversion function, a second cell having a photoelectric conversion function, and a structure body including a fibrous body, which firmly attaches and electrically connects the first cell and the second cell to each other. Accordingly, a multi-junction photoelectric conversion device in which semiconductor junctions are connected in series and sufficient electrical connection between p-i-n junctions is ensured can be provided.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 9, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Yukie SUZUKI, Kazuo NISHI
  • Patent number: 7845071
    Abstract: The present invention provides a substrate holding method capable of contributing to improvement in performance of an electronic part. A plastic film is adhered to a holding frame by using an adhesive tape having a proper gas releasing characteristic such that total quantity of gas detected when analysis using gas chromatograph mass spectrometry (dynamic HS-GC-MS) is conducted under test conditions of 180° C. and 10 minutes is 100.5 ?g/g or less in n-tetradecane. In the case where the plastic film held by the holding frame is subjected to a process of manufacturing an electronic part (for example, a solar battery), even when a process accompanying generation of heat during the manufacturing process (for example, a film forming process such as plasma CVD) is performed on the plastic film, a release amount of unnecessary gas released from the adhesive tape due to the influence of the heat is suppressed, so that deterioration in the performance of the electronic part caused by the unnecessary gas is suppressed.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: December 7, 2010
    Assignees: TDK Corporation, Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hisao Morooka, Hideaki Ninomiya, Junichi Shimamura, Kazuo Nishi
  • Patent number: 7838812
    Abstract: The present invention provides a photoelectric conversion device capable of detecting light from weak light to strong light and relates to a photoelectric conversion device having a photodiode having a photoelectric conversion layer; an amplifier circuit including a transistor; and a switch, where the photodiode and the amplifier circuit are electrically connected to each other by the switch when intensity of entering light is lower than predetermined intensity so that a photoelectric current is amplified by the amplifier circuit to be outputted, and the photodiode and part or all of the amplifier circuits are electrically disconnected by the switch so that a photoelectric current is reduced in an amplification factor to be outputted. According to such a photoelectric conversion device, light from weak light to strong light can be detected.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: November 23, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Tatsuya Arao, Atsushi Hirose, Yuusuke Sugawara, Naoto Kusumoto, Daiki Yamada, Hidekazu Takahashi
  • Patent number: 7824950
    Abstract: In fabrication of a semiconductor device mounted on a wiring board, a semiconductor circuit portion is formed over a glass substrate. Then, an interposer having connection terminals are bonded to the semiconductor circuit portion. After that, the glass substrate is peeled off from the semiconductor circuit portion, and a mold resin is poured to cover the periphery of the semiconductor circuit portion from a direction of the separation plane. Then, the mold resin is heated under predetermined conditions to be hardened.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: November 2, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yohei Monma, Daiki Yamada, Hidekazu Takahashi, Yuusuke Sugawara, Kazuo Nishi
  • Patent number: 7772667
    Abstract: The present invention provides a photoelectric conversion device in which a leakage current is suppressed. A photoelectric conversion device of the present invention comprises: a first electrode over a substrate; a photoelectric conversion layer including a first conductive layer having one conductivity, a second semiconductor layer, and a third semiconductor layer having a conductivity opposite to the one conductivity of the second semiconductor layer over the first electrode, wherein an end portion of the first electrode is covered with the first semiconductor layer; an insulating film, and a second electrode electrically connected to the third semiconductor film with the insulating film therebetween, over the insulating film, are formed over the third semiconductor film, and wherein a part of the second semiconductor layer and a part of the third semiconductor layer is removed in a region of the photoelectric conversion layer, which is not covered with the insulating film.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: August 10, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yuusuke Sugawara, Kazuo Nishi, Tatsuya Arao, Daiki Yamada, Hidekazu Takahashi, Naoto Kusumoto
  • Publication number: 20100187534
    Abstract: An object of the present invention to provide a semiconductor device manufactured in short time by performing the step of forming the thin film transistor and the step of forming the photoelectric conversion layer in parallel, and to provide a manufacturing process thereof. According to the present invention, a semiconductor device is manufactured in such a way that a thin film transistor is formed over a first substrate, a photoelectric conversion element is formed over a second substrate, and the thin film transistor and the photoelectric conversion element are connected electrically by sandwiching a conductive layer between the first and second substrates opposed to each other so that the thin film transistor and the photoelectric conversion element are located between the first and second substrates. Thus, a method for manufacturing a semiconductor device which suppresses the increase in the number of steps and which increases the throughput can be provided.
    Type: Application
    Filed: April 1, 2010
    Publication date: July 29, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kazuo NISHI, Junya MARUYAMA, Naoto KUSUMOTO, Yuusuke SUGAWARA
  • Publication number: 20100187405
    Abstract: It is an object to provide a photoelectric conversion device which detects light ranging from weak light to strong light. The present invention relates to a photoelectric conversion device having a photodiode having a photoelectric conversion layer, an amplifier circuit including a thin film transistor and a bias switching means, where a bias which is connected to the photodiode and the amplifier circuit is switched by the bias switching means when intensity of incident light exceeds predetermined intensity, and accordingly, light which is less than the predetermined intensity is detected by the photodiode and light which is more than the predetermined intensity is detected by the thin film transistor of the amplifier circuit. By the present invention, light ranging from weak light to strong light can be detected.
    Type: Application
    Filed: April 1, 2010
    Publication date: July 29, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Tatsuya ARAO, Atsushi HIROSE, Kazuo NISHI, Yuusuke SUGAWARA
  • Patent number: 7705283
    Abstract: It is an object to provide a photoelectric conversion device which detects light ranging from weak light to strong light. The present invention relates to a photoelectric conversion device having a photodiode having a photoelectric conversion layer, an amplifier circuit including a thin film transistor and a bias switching means, where a bias which is connected to the photodiode and the amplifier circuit is switched by the bias switching means when intensity of incident light exceeds predetermined intensity, and accordingly, light which is less than the predetermined intensity is detected by the photodiode and light which is more than the predetermined intensity is detected by the thin film transistor of the amplifier circuit. By the present invention, light ranging from weak light to strong light can be detected.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: April 27, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd
    Inventors: Tatsuya Arao, Atsushi Hirose, Kazuo Nishi, Yuusuke Sugawara
  • Patent number: 7691686
    Abstract: An object of the present invention to provide a semiconductor device manufactured in short time by performing the step of forming the thin film transistor and the step of forming the photoelectric conversion layer in parallel, and to provide a manufacturing process thereof. According to the present invention, a semiconductor device is manufactured in such a way that a thin film transistor is formed over a first substrate, a photoelectric conversion element is formed over a second substrate, and the thin film transistor and the photoelectric conversion element are connected electrically by sandwiching a conductive layer between the first and second substrates opposed to each other so that the thin film transistor and the photoelectric conversion element are located between the first and second substrates. Thus, a method for manufacturing a semiconductor device which suppresses the increase in the number of steps and which increases the throughput can be provided.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: April 6, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Junya Maruyama, Naoto Kusumoto, Yuusuke Sugawara