Patents by Inventor Kazuo Nishi

Kazuo Nishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100075455
    Abstract: The present invention relates to a film formation apparatus including a first transfer chamber having a roller for sending a substrate, a film formation chamber having a discharging electrode, a buffer chamber provided between the transfer chamber and the film formation chamber or between the film formation chambers, a slit provided in a portion where the substrate comes in and out in the buffer chamber, and a second transfer chamber having a roller for rewinding the substrate. The slit is provided with at least one touch roller, and the touch roller is in contact with a film formation surface of the substrate. In addition, the present invention also relates to a method for forming a film and a method for manufacturing a photoelectric conversion device that are performed by using such a film formation apparatus.
    Type: Application
    Filed: November 30, 2009
    Publication date: March 25, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yoshikazu HIURA, Hiroki ADACHI, Hironobu TAKAHASHI, Yuusuke SUGAWARA, Tatsuya ARAO, Kazuo NISHI, Yasuyuki ARAI
  • Patent number: 7679091
    Abstract: A semiconductor device, particularly, a photoelectric conversion element having a semiconductor layer is demonstrated. The photoelectric conversion element of the present invention comprises, over a substrate, a photoelectric conversion layer and first and second electrodes which are electrically connected to the photoelectric conversion layer. The photoelectric conversion element further comprises a wiring board over which a third and fourth electrodes are provided. The characteristic point of the present invention is that a bonding layer, which readily forms an alloy with a conductive material, is formed over the first and second electrodes. This bonding layer improves the bonding strength between the first and third electrodes and the second and fourth electrode, which contributes to the prevention of the connection defect between the substrate and the wiring board and consequentially to high reliability of the photoelectric conversion element.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: March 16, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Naoto Kusumoto, Kazuo Nishi, Yuusuke Sugawara
  • Patent number: 7666766
    Abstract: The present invention relates to a film formation apparatus including a first transfer chamber having a roller for sending a substrate, a film formation chamber having a discharging electrode, a buffer chamber provided between the transfer chamber and the film formation chamber or between the film formation chambers, a slit provided in a portion where the substrate comes in and out in the buffer chamber, and a second transfer chamber having a roller for rewinding the substrate. The slit is provided with at least one touch roller, and the touch roller is in contact with a film formation surface of the substrate. In addition, the present invention also relates to a method for forming a film and a method for manufacturing a photoelectric conversion device that are performed by using such a film formation apparatus.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: February 23, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshikazu Hiura, Hiroki Adachi, Hironobu Takahashi, Yuusuke Sugawara, Tatsuya Arao, Kazuo Nishi, Yasuyuki Arai
  • Patent number: 7652658
    Abstract: A photodetector of the invention is characterized by having a plurality of detector elements that are arranged over a light-transparent substrate and are connected in parallel. A foldable portable communication tool having two display portions of the invention is characterized by including one photodetector which includes a plurality of detector elements connected in parallel.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: January 26, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Yu Yamazaki, Tomoyuki Iwabuchi, Keisuke Miyagawa
  • Publication number: 20090309859
    Abstract: A photodetector of the invention is characterized by having a plurality of detector elements that are arranged over a light-transparent substrate and are connected in parallel. A foldable portable communication tool having two display portions of the invention is characterized by including one photodetector which includes a plurality of detector elements connected in parallel.
    Type: Application
    Filed: August 25, 2009
    Publication date: December 17, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kazuo Nishi, Yu Yamazaki, Tomoyuki Iwabuchi, Keisuke Miyagawa
  • Publication number: 20090212285
    Abstract: The manufacturing method of a semiconductor device according to the present invention comprises steps of forming a metal film, an insulating film, and an amorphous semiconductor film in sequence over a first substrate; crystallizing the metal film and the amorphous semiconductor film; forming a first semiconductor element by using the crystallized semiconductor film as an active region; attaching a support to the first semiconductor element by using an adhesive; causing separation between the metal film and the insulating film; attaching a second substrate to the separated insulating film; separating the support by removing the adhesive; forming an amorphous semiconductor film over the first semiconductor element; and forming a second semiconductor element using the amorphous semiconductor film as an active region.
    Type: Application
    Filed: February 12, 2009
    Publication date: August 27, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kazuo NISHI, Toru TAKAYAMA, Yuugo GOTO
  • Publication number: 20090194154
    Abstract: An object is to reduce the breakage of appearance such as a crack, a split and a chip by external stress of a semiconductor device. Another object is that manufacturing yield of a thin semiconductor device increases. The semiconductor device includes a plurality of semiconductor integrated circuits mounted on the interposer. Each of the plurality of semiconductor integrated circuits includes a light transmitting substrate which have a step on the side surface and in which the width of one section of the light transmitting substrate is narrower than that of the other section of the light transmitting substrate when the light transmitting substrate is divided at a plane including the step, a semiconductor element layer including a photoelectric conversion element provided on one surface of the light transmitting substrate, and a chromatic color light transmitting resin layer which covers the other surface of the light transmitting substrate and a part of the side surface.
    Type: Application
    Filed: January 23, 2009
    Publication date: August 6, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hidekazu TAKAHASHI, Yohei MONMA, Daiki YAMADA, Takahiro IGUCHI, Kazuo NISHI
  • Publication number: 20090126790
    Abstract: A photo-sensor having a structure which can suppress electrostatic discharge damage is provided. Conventionally, a transparent electrode has been formed over the entire surface of a light receiving region; however, in the present invention, the transparent electrode is not formed, and a p-type semiconductor layer and an n-type semiconductor layer of a photoelectric conversion layer are used as an electrode. Therefore, in the photo-sensor according to the present invention, resistance is increased an electrostatic discharge damage can be suppressed. In addition, positions of the p-type semiconductor layer and the n-type semiconductor layer, which serve as an electrode, are kept away; and thus, resistance is increased and withstand voltage can be improved.
    Type: Application
    Filed: January 16, 2009
    Publication date: May 21, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kazuo Nishi, Yuusuke Sugawara, Hironobu Takahashi, Tatsuya Arao
  • Publication number: 20090121119
    Abstract: The present invention provides a photoelectric conversion device capable of detecting light from weak light to strong light and relates to a photoelectric conversion device having a photodiode having a photoelectric conversion layer; an amplifier circuit including a transistor; and a switch, where the photodiode and the amplifier circuit are electrically connected to each other by the switch when intensity of entering light is lower than predetermined intensity so that a photoelectric current is amplified by the amplifier circuit to be outputted, and the photodiode and part or all of the amplifier circuits are electrically disconnected by the switch so that a photoelectric current is reduced in an amplification factor to be outputted. According to such a photoelectric conversion device, light from weak light to strong light can be detected.
    Type: Application
    Filed: January 8, 2009
    Publication date: May 14, 2009
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Tatsuya Arao, Atsushi Hirose, Yuusuke Sugawara, Naoto Kusumoto, Daiki Yamada, Hidekazu Takahashi
  • Patent number: 7531784
    Abstract: An object is to provide a photoelectric conversion device capable of detecting a wider range of illuminance without expansion of a range of an output voltage or output current. The photoelectric conversion device has a photoelectric conversion device including a photoelectric conversion element and an amplifier circuit electrically connected to the photoelectric conversion element, and a bias switching unit for reversing a bias to be applied to the photoelectric conversion device. The bias to be applied to the photoelectric conversion device is reversed with use of the bias switching unit, whereby the photoelectric conversion device can detect a wider range of illuminance without expansion of a range of an output voltage or output current.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: May 12, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tatsuya Arao, Atsushi Hirose, Kazuo Nishi, Yuusuke Sugawara
  • Publication number: 20090117681
    Abstract: The object of the present invention is to miniaturize the area occupied by the element and to integrate a plenty of elements in a limited area so that the sensor element can have higher output and smaller size. In the present invention, higher output and miniaturization are achieved by uniting a sensor element using an amorphous semiconductor film (typically an amorphous silicon film) and an output amplifier circuit including a TFT with a semiconductor film having a crystal structure (typically a poly-crystalline silicon film) used as an active layer over a plastic film substrate that can resist the temperature in the process for mounting such as a solder reflow process. According to the present invention, the sensor element that can resist the bending stress can be obtained.
    Type: Application
    Filed: January 6, 2009
    Publication date: May 7, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Junya Maruyama, Toru Takayama, Masafumi Morisue, Ryosuke Watanabe, Eiji Sugiyama, Susumu Okazaki, Kazuo Nishi, Jun Koyama, Takeshi Osada, Takanori Matsuzaki
  • Patent number: 7501306
    Abstract: The manufacturing method of a semiconductor device according to the present invention comprises steps of forming a metal film, an insulating film, and an amorphous semiconductor film in sequence over a first substrate; crystallizing the metal film and the amorphous semiconductor film; forming a first semiconductor element by using the crystallized semiconductor film as an active region; attaching a support to the first semiconductor element by using an adhesive; causing separation between the metal film and the insulating film; attaching a second substrate to the separated insulating film; separating the support by removing the adhesive; forming an amorphous semiconductor film over the first semiconductor element; and forming a second semiconductor element using the amorphous semiconductor film as an active region.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: March 10, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Toru Takayama, Yuugo Goto
  • Patent number: 7495272
    Abstract: The area occupied by a photo-sensor element may be reduced and multiple elements may be integrated in a limited area so that the sensor element can have higher output and smaller size. Higher output and miniaturization are achieved by uniting a sensor element using an amorphous semiconductor film (typically an amorphous silicon film) and an output amplifier circuit including a TFT with a semiconductor film having a crystal structure (typically a poly-crystalline silicon film) used as an active layer over a plastic film substrate that can resist the temperature in the process for mounting such as a solder reflow process. A sensor element that can resist bending stress can be obtained.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: February 24, 2009
    Assignee: Semiconductor Energy Labortaory Co., Ltd.
    Inventors: Junya Maruyama, Toru Takayama, Masafumi Morisue, Ryosuke Watanabe, Eiji Sugiyama, Susumu Okazaki, Kazuo Nishi, Jun Koyama, Takeshi Osada, Takanori Matsuzaki
  • Patent number: 7492028
    Abstract: A photo-sensor having a structure which can suppress electrostatic discharge damage is provided. Conventionally, a transparent electrode has been formed over the entire surface of a light receiving region; however, in the present invention, the transparent electrode is not formed, and a p-type semiconductor layer and an n-type semiconductor layer of a photoelectric conversion layer are used as an electrode. Therefore, in the photo-sensor according to the present invention, resistance is increased an electrostatic discharge damage can be suppressed. In addition, positions of the p-type semiconductor layer and the n-type semiconductor layer, which serve as an electrode, are kept away; and thus, resistance is increased and withstand voltage can be improved.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: February 17, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Yuusuke Sugawara, Hironobu Takahashi, Tatsuya Arao
  • Patent number: 7485838
    Abstract: The present invention provides a photoelectric conversion device capable of detecting light from weak light to strong light and relates to a photoelectric conversion device having a photodiode having a photoelectric conversion layer; an amplifier circuit including a transistor; and a switch, where the photodiode and the amplifier circuit are electrically connected to each other by the switch when intensity of entering light is lower than predetermined intensity so that a photoelectric current is amplified by the amplifier circuit to be outputted, and the photodiode and part or all of the amplifier circuits are electrically disconnected by the switch so that a photoelectric current is reduced in an amplification factor to be outputted. According to such a photoelectric conversion device, light from weak light to strong light can be detected.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: February 3, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Tatsuya Arao, Atsushi Hirose, Yuusuke Sugawara, Naoto Kusumoto, Daiki Yamada, Hidekazu Takahashi
  • Publication number: 20080308851
    Abstract: A semiconductor device, particularly, a photoelectric conversion element having a semiconductor layer is demonstrated. The photoelectric conversion element of the present invention comprises, over a substrate, a photoelectric conversion layer and first and second electrodes which are electrically connected to the photoelectric conversion layer. The photoelectric conversion element further comprises a wiring board over which a third and fourth electrodes are provided. The characteristic point of the present invention is that a bonding layer, which readily forms an alloy with a conductive material, is formed over the first and second electrodes. This bonding layer improves the bonding strength between the first and third electrodes and the second and fourth electrode, which contributes to the prevention of the connection defect between the substrate and the wiring board and consequentially to high reliability of the photoelectric conversion element.
    Type: Application
    Filed: March 27, 2008
    Publication date: December 18, 2008
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Naoto Kusumoto, Kazuo Nishi, Yuusuke Sugawara
  • Patent number: 7449718
    Abstract: The manufacturing method of a semiconductor device according to the present invention comprises steps of forming a metal film, an insulating film, and an amorphous semiconductor film in sequence over a first substrate; crystallizing the metal film and the amorphous semiconductor film; forming a first semiconductor element by using the crystallized semiconductor film as an active region; attaching a support to the first semiconductor element by using an adhesive; causing separation between the metal film and the insulating film; attaching a second substrate to the separated insulating film; separating the support by removing the adhesive; forming an amorphous semiconductor film over the first semiconductor element; and forming a second semiconductor element using the amorphous semiconductor film as an active region.
    Type: Grant
    Filed: January 2, 2004
    Date of Patent: November 11, 2008
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Toru Takayama, Yuugo Goto
  • Publication number: 20080265351
    Abstract: In fabrication of a semiconductor device mounted on a wiring board, a semiconductor circuit portion is formed over a glass substrate. Then, an interposer having connection terminals are bonded to the semiconductor circuit portion. After that, the glass substrate is peeled off from the semiconductor circuit portion, and a mold resin is poured to cover the periphery of the semiconductor circuit portion from a direction of the separation plane. Then, the mold resin is heated under predetermined conditions to be hardened.
    Type: Application
    Filed: March 27, 2008
    Publication date: October 30, 2008
    Inventors: Yohei Monma, Daiki Yamada, Hidekazu Takahashi, Yuusuke Sugawara, Kazuo Nishi
  • Publication number: 20080203515
    Abstract: A photoelectric conversion device includes: a first substrate of which end portions are cut off so as to slope or with a groove shape; a photodiode and an amplifier circuit over the first substrate; a first electrode electrically connected to the photodiode and provided over one end portion of the first substrate; a second electrode electrically connected to the amplifier circuit and provided over an another end portion of the first substrate; and a second substrate having third and fourth electrodes thereon. The first and second electrodes are attached to the third and fourth electrodes, respectively, with a conductive material provided not only at the surfaces of the first, second, third, and fourth electrodes facing each other but also at the side surfaces of the first and second electrodes to increase the adhesiveness between a photoelectric conversion device and a member on which the photoelectric conversion device is mounted.
    Type: Application
    Filed: February 12, 2008
    Publication date: August 28, 2008
    Inventors: Naoto Kusumoto, Kazuo Nishi, Yuusuke Sugawara
  • Publication number: 20080108205
    Abstract: The present invention provides a semiconductor device formed over an insulating substrate, typically a semiconductor device having a structure in which mounting strength to a wiring board can be increased in an optical sensor, a solar battery, or a circuit using a TFT, and which can make it mount on a wiring board with high density, and further a method for manufacturing the same. According to the present invention, in a semiconductor device, a semiconductor element is formed on an insulating substrate, a concave portion is formed on a side face of the semiconductor device, and a conductive film electrically connected to the semiconductor element is formed in the concave portion.
    Type: Application
    Filed: December 14, 2007
    Publication date: May 8, 2008
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Hiroki Adachi, Junya Maruyama, Naoto Kusumoto, Yuusuke Sugawara, Tomoyuki Aoki, Eiji Sugiyama, Hironobu Takahashi